Edit
Here's a new version which correctly applies the length and model but doesn't position the model correctly. I figured it might help.
http://codepen.io/pixelass/pen/78f9e97579f99dc4ae0473e33cae27d5?editors=001
I have 2 canvas instances
model
result
On the model view the user can drag the handles to modify the model
The result view should then apply the model to every segment (relatively)
This is just a basic l-system logic for fractal curves though I am having problems applying the model to the segments.
Se the picture below: The red lines should replicate the model, but I can't figure out how to correctly apply the logic
I have a demo version here: http://codepen.io/pixelass/pen/c4d7650af7ce4901425b326ad7a4b259
ES6
// simplify Math
'use strict';
Object.getOwnPropertyNames(Math).map(function(prop) {
window[prop] = Math[prop];
});
// add missing math functions
var rad = (degree)=> {
return degree * PI / 180;
};
var deg = (radians)=> {
return radians * 180 / PI;
};
// get our drawing areas
var model = document.getElementById('model');
var modelContext = model.getContext('2d');
var result = document.getElementById('result');
var resultContext = result.getContext('2d');
var setSize = function setSize() {
model.height = 200;
model.width = 200;
result.height = 400;
result.width = 400;
};
// size of the grabbing dots
var dotSize = 5;
// flag to determine if we are grabbing a point
var grab = -1;
// set size to init instances
setSize();
//
var iterations = 1;
// define points
// this only defines the initial model
var returnPoints = function returnPoints(width) {
return [{
x: 0,
y: width
}, {
x: width / 3,
y: width
}, {
x: width / 2,
y: width / 3*2
}, {
x: width / 3 * 2,
y: width
}, {
x: width,
y: width
}];
};
// set initial state for model
var points = returnPoints(model.width);
// handle interaction
// grab points only if hovering
var grabPoint = function grabPoint(e) {
var X = e.layerX;
var Y = e.layerY;
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
model.classList.add('grabbing');
grab = i;
}
}
};
// release point
var releasePoint = function releasePoint(e) {
if (grab > -1) {
model.classList.add('grab');
model.classList.remove('grabbing');
}
grab = -1;
};
// set initial state for result
// handle mouse movement on the model canvas
var handleMove = function handleMove(e) {
// determine current mouse position
var X = e.layerX;
var Y = e.layerY;
// clear classes
model.classList.remove('grabbing');
model.classList.remove('grab');
// check if hovering a dot
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
// indicate grabbable
model.classList.add('grab');
}
}
// if grabbing
if (grab > -1) {
// indicate grabbing
model.classList.add('grabbing');
// modify dot on the model canvas
points[grab] = {
x: X,
y: Y
};
// modify dots on the result canvas
drawSegment({
x: points[grab - 1].x,
y: points[grab - 1].y
}, {
x: X,
y: Y
});
}
};
let m2 = points[1].x / points[4].x
let m3 = points[2].x / points[4].x
let m4 = points[3].x / points[4].x
let n2 = points[1].y / points[4].y
let n3 = points[2].y / points[4].y
let n4 = points[3].y / points[4].y
var drawSegment = function drawSegment(start, end) {
var dx = end.x - start.x
var dy = end.y - start.y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = end.x
let y1 = end.y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
resultContext.srtokeStyle = 'red'
resultContext.beginPath()
resultContext.moveTo(x1, y1)
resultContext.lineTo(x2, y2)
resultContext.stroke()
m2 = points[1].x / points[4].x
m3 = points[2].x / points[4].x
m4 = points[3].x / points[4].x
n2 = points[1].y / points[4].y
n3 = points[2].y / points[4].y
n4 = points[3].y / points[4].y
};
var drawDots = function drawDots(points) {
// draw dots
for (var i = 1; i < points.length - 1; i++) {
modelContext.lineWidth = 4; //
modelContext.beginPath();
modelContext.strokeStyle = 'hsla(' + 360 / 5 * i + ',100%,40%,1)';
modelContext.fillStyle = 'hsla(0,100%,100%,1)';
modelContext.arc(points[i].x, points[i].y, dotSize, 0, 2 * PI);
modelContext.stroke();
modelContext.fill();
}
};
var drawModel = function drawModel(ctx, points, n) {
var dx = points[1].x - points[0].x
var dy = points[1].y - points[0].y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = points[1].x
let y1 = points[1].y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
ctx.strokeStyle = 'hsla(0,0%,80%,1)';
ctx.lineWidth = 1;
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
ctx.strokeStyle = 'hsla(100,100%,80%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke()
if (n > 0 ) {
drawModel(resultContext, [{
x: points[0].x,
y: points[0].y
}, {
x: points[1].x * m2,
y: points[1].y * n2
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m2,
y: points[1].y * n2
}, {
x: points[1].x * m3,
y: points[1].y * n3
}], n - 1);
/*
drawModel(resultContext, [{
x: points[1].x * m3,
y: points[1].y * m3
}, {
x: points[1].x * m4,
y: points[1].y * n4
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m4,
y: points[1].y * m4
}, {
x: points[1].x,
y: points[1].y
}], n - 1);*/
} else {
ctx.strokeStyle = 'hsla(0,100%,50%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
}
};
var draw = function draw() {
// clear both screens
modelContext.fillStyle = 'hsla(0,0%,100%,.5)';
modelContext.fillRect(0, 0, model.width, model.height);
resultContext.fillStyle = 'hsla(0,0%,100%,1)';
resultContext.fillRect(0, 0, result.width, result.height);
// draw model
drawModel(modelContext, [{
x: 0,
y: 200
}, {
x: 200,
y: 200
}]);
drawModel(resultContext, [{
x: 0,
y: 400
}, {
x: 400,
y: 400
}],iterations);
// draw the dots to indicate grabbing points
drawDots(points);
// redraw
requestAnimationFrame(draw);
};
window.addEventListener('resize', setSize);
model.addEventListener('mousemove', handleMove);
model.addEventListener('mousedown', grabPoint);
window.addEventListener('mouseup', releasePoint);
setSize();
draw();
Write a function to transform a point given the point, an old origin (the start of the model line segment), a new origin (the start of the child line segment), an angle and a scale (you have already calculated these):
var transformPoint = function transformPoint(point, oldOrigin, newOrigin, angle, dist) {
// subtract old origin to rotate and scale relative to it:
var x = point.x - oldOrigin.x;
var y = point.y - oldOrigin.y;
// rotate by angle
var sine = sin(angle)
var cosine = cos(angle)
var rotatedX = (x * cosine) - (y * sine);
var rotatedY = (x * sine) + (y * cosine);
// scale
rotatedX *= dist;
rotatedY *= dist;
// offset by new origin and return:
return {x: rotatedX + newOrigin.x - oldOrigin.x, y: rotatedY + newOrigin.y - oldOrigin.y }
}
You need to translate it by the old origin (so that you can rotate around it), then rotate, then scale, then translate by the new origin. Then return the point.
modelLogic[0] is the old origin because it defines the start of the segment in the model and points[0] is the new origin because that is what it is mapped to by the transformation.
You can call the function from your drawModel function like this:
let p1 = transformPoint(modelLogic[0], modelLogic[0], points[0], angle, dist);
let p2 = transformPoint(modelLogic[1], modelLogic[0], points[0], angle, dist);
let p3 = transformPoint(modelLogic[2], modelLogic[0], points[0], angle, dist);
let p4 = transformPoint(modelLogic[3], modelLogic[0], points[0], angle, dist);
let p5 = transformPoint(modelLogic[4], modelLogic[0], points[0], angle, dist);
and change your drawing code to use the returned points p1, p2 etc instead of x1, y1, x2, y2 etc.
Alternatively, you can create a single matrix to represent all of these translation, rotation and scaling transforms and transform each point by it in turn.
Related
I'm making a pong style game in JavaScript where the paddle is curved. I already have collision between 2 balls but I seem to be having trouble with the ball and arc.
I've looked at this thread already:
Collision detection of a ball with an arc
But I can't seem to make the answer there work for me. Perhaps because I draw the arc differently.
Here's my variables as well as how the paddle is being drawn onto the canvas. When the player presses a key, the angles for the paddle are incremented so it revolves around the player.
If anyone can help I would appreciate it.
https://i.stack.imgur.com/kz0ZV.png
function Player(name, radius, innerColour, outerColour, x, y)
{
this.prop = {
name: name,
innerColour: innerColour,
outerColour: outerColour
};
this.phys = {
x: x,
y: y,
dx: 0,
dy: 0,
mass: radius ** 3,
radius: radius
};
this.padd = {
innerRadius: 65,
outerRadius: 85,
active: true,
startAngle: 225,
centerAngle: 270,
endAngle: 315,
rotation: false
};
this.draw = function()
{
var inR = this.padd.innerRadius;
var outR = this.padd.outerRadius;
var inC = Math.sqrt((inR ** 2) * 2);
var outC = Math.sqrt((outR ** 2) * 2);
var sAng = this.padd.startAngle;
var cAng = this.padd.centerAngle;
var eAng = this.padd.endAngle;
//Draw paddle
ctx.beginPath();
ctx.moveTo(this.rotatePoint(inR, sAng, "x"), this.rotatePoint(inR, sAng, "y"));
ctx.arcTo (this.rotatePoint(inC, cAng, "x"), this.rotatePoint(inC, cAng, "y"),
this.rotatePoint(inR, eAng, "x"), this.rotatePoint(inR, eAng, "y"), inR);
ctx.lineTo(this.rotatePoint(outR, eAng, "x"), this.rotatePoint(outR, eAng, "y"))
ctx.arcTo (this.rotatePoint(outC, cAng, "x"), this.rotatePoint(outC, cAng, "y"),
this.rotatePoint(outR, sAng, "x"), this.rotatePoint(outR, sAng, "y"), outR);
ctx.lineTo(this.rotatePoint(inR, sAng, "x"), this.rotatePoint(inR, sAng, "y"));
ctx.fillStyle = this.prop.outerColour;
ctx.fill();
ctx.closePath();
};
this.rotatePoint = function(radius, angle, axis)
{
var x = this.phys.x;
var y = this.phys.y;
var radians = angle * (Math.PI / 180.0);
var x1 = x + radius;
var newX = Math.cos(radians) * (x1 - x) + x;
var newY = Math.sin(radians) * (x1 - x) + y;
if (axis == "x")
{
return newX;
}
else if (axis == "y")
{
return newY;
}
};
}
Edit: Sorry I forgot to add my attempt at the collision code.
I run it every frame but it doesn't seem to detect when they're colliding.
The objects array is both every ball on the screen and the 2 players, and the players array just contains the 2 players.
//Calculates events, speed and trajectory for paddle collisions
function paddleCollision()
{
for (var obj in objects)
{
for (var player in players)
{
var sAng = players[player].padd.startAngle * (Math.PI / 180.0);
var eAng = players[player].padd.endAngle * (Math.PI / 180.0);
var inR = players[player].padd.innerRadius;
var outR = players[player].padd.outerRadius;
var ballR = objects[obj].phys.radius;
var collides = false;
var dX = objects[obj].phys.x - players[player].phys.x;
var dY = objects[obj].phys.y - players[player].phys.y;
var dist = Math.sqrt((dX ** 2) + (dY ** 2));
var dir = Math.atan2(dY, dX);
var tanAng = Math.asin(ballR / dist);
var dir0 = dir + tanAng;
var dir1 = dir - tanAng;
if (dist + ballR > inR && dist - ballR < outR)
{
var d = dir > sAng && dir < eAng;
var d0 = dir0 > sAng && dir0 < eAng;
var d1 = dir1 > sAng && dir1 < eAng;
if (d || d0 && d1)
{
collides = true;
}
else if (d0 != d1)
{
var x0 = players[player].phys.x + outR * Math.cos(sAng) - objects[obj].phys.x;
var y0 = players[player].phys.y + outR * Math.sin(sAng) - objects[obj].phys.y;
var x1 = players[player].phys.x + outR * Math.cos(eAng) - objects[obj].phys.x;
var y1 = players[player].phys.y + outR * Math.sin(eAng) - objects[obj].phys.y;
if ((x0 ** 2) + (y0 ** 2) < (ballR ** 2) || (x1 ** 2) + (y1 ** 2) < (ballR ** 2))
{
collides = true;
}
}
}
}
}
if (collides)
{
console.log("HITTING");
}
}
This worked for me:
function arcsCollision(first, second) {
const dx = first.x - second.x;
const dy = first.y - second.y;
const distance = Math.sqrt(dx**2 + dy**2);
return (
distance
<=
(first.radius + second.radius + 0.1)
);
}
function arcAndRectCollision(arc, rect) {
return (
arc.x - arc.radius < rect.x ||
arc.x + arc.radius > rect.width ||
arc.y - arc.radius < rect.y ||
arc.y + arc.radius > rect.height
);
}
You can go to this website for more info.
https://spicyyoghurt.com/tutorials/html5-javascript-game-development/collision-detection-physics
I have a basic circle bouncing off the walls of a rectangle canvas (that I adapted from an example).
https://jsfiddle.net/n5stvv52/1/
The code to check for this kind of collision is somewhat crude, like so, but it works:
if (p.x > canvasWidth - p.rad) {
p.x = canvasWidth - p.rad
p.velX *= -1
}
if (p.x < p.rad) {
p.x = p.rad
p.velX *= -1
}
if (p.y > canvasHeight - p.rad) {
p.y = canvasHeight - p.rad
p.velY *= -1
}
if (p.y < p.rad) {
p.y = p.rad
p.velY *= -1
}
Where p is the item moving around.
However, the bounds of my canvas now need to be a circle, so I check collision with the following:
const dx = p.x - canvasRadius
const dy = p.y - canvasRadius
const collision = Math.sqrt(dx * dx + dy * dy) >= canvasRadius - p.rad
if (collision) {
console.log('Out of circle bounds!')
}
When my ball hits the edges of the circle, the if (collision) statement executes as true and I see the log. So I can get it detected, but I'm unable to know how to calculate the direction it should then go after that.
Obviously comparing x to the canvas width isn't what I need because that's the rectangle and a circle is cut at the corners.
Any idea how I can update my if statements to account for this newly detected circle?
I'm absolutely terrible with basic trigonometry it seems, so please bear with me! Thank you.
You can use the polar coordinates to normalize the vector:
var theta = Math.atan2(dy, dx)
var R = canvasRadius - p.rad
p.x = canvasRadius + R * Math.cos(theta)
p.y = canvasRadius + R * Math.sin(theta)
p.velX *= -1
p.velY *= -1
https://jsfiddle.net/d3k5pd94/1/
Update: The movement can be more natural if we add randomness to acceleration:
p.velX *= Math.random() > 0.5 ? 1 : -1
p.velY *= Math.random() > 0.5 ? 1 : -1
https://jsfiddle.net/1g9h9jvq/
So in order to do this you will indeed need some good ol' trig. The basic ingredients you'll need are:
The vector that points from the center of the circle to the collision point.
The velocity vector of the ball
Then, since things bounce with roughly an "equal and opposite angle", you'll need to find the angle difference between that velocity vector and the radius vector, which you can get by using a dot product.
Then do some trig to get a new vector that is that much off from the radius vector, in the other direction (this is your equal and opposite). Set that to be the new velocity vector, and you're good to go.
I know that's a bit dense, especially if you're rusty with your trig / vector math, so here's the code to get it going. This code could probably be simplified but it demonstrates the essential steps at least:
function canvasApp (selector) {
const canvas = document.querySelector(selector)
const context = canvas.getContext('2d')
const canvasWidth = canvas.width
const canvasHeight = canvas.height
const canvasRadius = canvasWidth / 2
const particleList = {}
const numParticles = 1
const initVelMax = 1.5
const maxVelComp = 2.5
const randAccel = 0.3
const fadeColor = 'rgba(255,255,255,0.1)'
let p
context.fillStyle = '#050505'
context.fillRect(0, 0, canvasWidth, canvasHeight)
createParticles()
draw()
function createParticles () {
const minRGB = 16
const maxRGB = 255
const alpha = 1
for (let i = 0; i < numParticles; i++) {
const vAngle = Math.random() * 2 * Math.PI
const vMag = initVelMax * (0.6 + 0.4 * Math.random())
const r = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const g = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const b = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const color = `rgba(${r},${g},${b},${alpha})`
const newParticle = {
x: Math.random() * canvasWidth,
y: Math.random() * canvasHeight,
velX: vMag * Math.cos(vAngle),
velY: vMag * Math.sin(vAngle),
rad: 15,
color
}
if (i > 0) {
newParticle.next = particleList.first
}
particleList.first = newParticle
}
}
function draw () {
context.fillStyle = fadeColor
context.fillRect(0, 0, canvasWidth, canvasHeight)
p = particleList.first
// random accleration
p.velX += (1 - 2 * Math.random()) * randAccel
p.velY += (1 - 2 * Math.random()) * randAccel
// don't let velocity get too large
if (p.velX > maxVelComp) {
p.velX = maxVelComp
} else if (p.velX < -maxVelComp) {
p.velX = -maxVelComp
}
if (p.velY > maxVelComp) {
p.velY = maxVelComp
} else if (p.velY < -maxVelComp) {
p.velY = -maxVelComp
}
p.x += p.velX
p.y += p.velY
// boundary
const dx = p.x - canvasRadius
const dy = p.y - canvasRadius
const collision = Math.sqrt(dx * dx + dy * dy) >= canvasRadius - p.rad
if (collision) {
console.log('Out of circle bounds!')
// Center of circle.
const center = [Math.floor(canvasWidth/2), Math.floor(canvasHeight/2)];
// Vector that points from center to collision point (radius vector):
const radvec = [p.x, p.y].map((c, i) => c - center[i]);
// Inverse vector, this vector is one that is TANGENT to the circle at the collision point.
const invvec = [-p.y, p.x];
// Direction vector, this is the velocity vector of the ball.
const dirvec = [p.velX, p.velY];
// This is the angle in radians to the radius vector (center to collision point).
// Time to rememeber some of your trig.
const radangle = Math.atan2(radvec[1], radvec[0]);
// This is the "direction angle", eg, the DIFFERENCE in angle between the radius vector
// and the velocity vector. This is calculated using the dot product.
const dirangle = Math.acos((radvec[0]*dirvec[0] + radvec[1]*dirvec[1]) / (Math.hypot(...radvec)*Math.hypot(...dirvec)));
// This is the reflected angle, an angle that is "equal and opposite" to the velocity vec.
const refangle = radangle - dirangle;
// Turn that back into a set of coordinates (again, remember your trig):
const refvec = [Math.cos(refangle), Math.sin(refangle)].map(x => x*Math.hypot(...dirvec));
// And invert that, so that it points back to the inside of the circle:
p.velX = -refvec[0];
p.velY = -refvec[1];
// Easy peasy lemon squeezy!
}
context.fillStyle = p.color
context.beginPath()
context.arc(p.x, p.y, p.rad, 0, 2 * Math.PI, false)
context.closePath()
context.fill()
p = p.next
window.requestAnimationFrame(draw)
}
}
canvasApp('#canvas')
<canvas id="canvas" width="500" height="500" style="border: 1px solid red; border-radius: 50%;"></canvas>
DISCLAIMER: Since your initial position is random, this doens't work very well with the ball starts already outside of the circle. So make sure the initial point is within the bounds.
You don't need trigonometry at all. All you need is the surface normal, which is the vector from the point of impact to the center. Normalize it (divide both coordinates by the length), and you get the new velocity using
v' = v - 2 * (v • n) * n
Where v • n is the dot product:
v • n = v.x * n.x + v.y * n.y
Translated to your code example, that's
// boundary
const dx = p.x - canvasRadius
const dy = p.y - canvasRadius
const nl = Math.sqrt(dx * dx + dy * dy)
const collision = nl >= canvasRadius - p.rad
if (collision) {
// the normal at the point of collision is -dx, -dy normalized
var nx = -dx / nl
var ny = -dy / nl
// calculate new velocity: v' = v - 2 * dot(d, v) * n
const dot = p.velX * nx + p.velY * ny
p.velX = p.velX - 2 * dot * nx
p.velY = p.velY - 2 * dot * ny
}
function canvasApp(selector) {
const canvas = document.querySelector(selector)
const context = canvas.getContext('2d')
const canvasWidth = canvas.width
const canvasHeight = canvas.height
const canvasRadius = canvasWidth / 2
const particleList = {}
const numParticles = 1
const initVelMax = 1.5
const maxVelComp = 2.5
const randAccel = 0.3
const fadeColor = 'rgba(255,255,255,0.1)'
let p
context.fillStyle = '#050505'
context.fillRect(0, 0, canvasWidth, canvasHeight)
createParticles()
draw()
function createParticles() {
const minRGB = 16
const maxRGB = 255
const alpha = 1
for (let i = 0; i < numParticles; i++) {
const vAngle = Math.random() * 2 * Math.PI
const vMag = initVelMax * (0.6 + 0.4 * Math.random())
const r = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const g = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const b = Math.floor(minRGB + Math.random() * (maxRGB - minRGB))
const color = `rgba(${r},${g},${b},${alpha})`
const newParticle = {
// start inside circle
x: canvasWidth / 4 + Math.random() * canvasWidth / 2,
y: canvasHeight / 4 + Math.random() * canvasHeight / 2,
velX: vMag * Math.cos(vAngle),
velY: vMag * Math.sin(vAngle),
rad: 15,
color
}
if (i > 0) {
newParticle.next = particleList.first
}
particleList.first = newParticle
}
}
function draw() {
context.fillStyle = fadeColor
context.fillRect(0, 0, canvasWidth, canvasHeight)
// draw circle bounds
context.fillStyle = "black"
context.beginPath()
context.arc(canvasRadius, canvasRadius, canvasRadius, 0, 2 * Math.PI, false)
context.closePath()
context.stroke()
p = particleList.first
// random accleration
p.velX += (1 - 2 * Math.random()) * randAccel
p.velY += (1 - 2 * Math.random()) * randAccel
// don't let velocity get too large
if (p.velX > maxVelComp) {
p.velX = maxVelComp
} else if (p.velX < -maxVelComp) {
p.velX = -maxVelComp
}
if (p.velY > maxVelComp) {
p.velY = maxVelComp
} else if (p.velY < -maxVelComp) {
p.velY = -maxVelComp
}
p.x += p.velX
p.y += p.velY
// boundary
const dx = p.x - canvasRadius
const dy = p.y - canvasRadius
const nl = Math.sqrt(dx * dx + dy * dy)
const collision = nl >= canvasRadius - p.rad
if (collision) {
// the normal at the point of collision is -dx, -dy normalized
var nx = -dx / nl
var ny = -dy / nl
// calculate new velocity: v' = v - 2 * dot(d, v) * n
const dot = p.velX * nx + p.velY * ny
p.velX = p.velX - 2 * dot * nx
p.velY = p.velY - 2 * dot * ny
}
context.fillStyle = p.color
context.beginPath()
context.arc(p.x, p.y, p.rad, 0, 2 * Math.PI, false)
context.closePath()
context.fill()
p = p.next
window.requestAnimationFrame(draw)
}
}
canvasApp('#canvas')
<canvas id="canvas" width="176" height="176"></canvas>
I'm new to HTML5 Canvas and I'm trying to draw a triangle with rounded corners.
I have tried
ctx.lineJoin = "round";
ctx.lineWidth = 20;
but none of them are working.
Here's my code:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
var x = 18 / 2;
var y = 0;
var triangleWidth = 18;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>
Could you help me?
Rounding corners
An invaluable function I use a lot is rounded polygon. It takes a set of 2D points that describe a polygon's vertices and adds arcs to round the corners.
The problem with rounding corners and keeping within the constraint of the polygons area is that you can not always fit a round corner that has a particular radius.
In these cases you can either ignore the corner and leave it as pointy or, you can reduce the rounding radius to fit the corner as best possible.
The following function will resize the corner rounding radius to fit the corner if the corner is too sharp and the lines from the corner not long enough to get the desired radius in.
Note the code has comments that refer to the Maths section below if you want to know what is going on.
roundedPoly(ctx, points, radius)
// ctx is the context to add the path to
// points is a array of points [{x :?, y: ?},...
// radius is the max rounding radius
// this creates a closed polygon.
// To draw you must call between
// ctx.beginPath();
// roundedPoly(ctx, points, radius);
// ctx.stroke();
// ctx.fill();
// as it only adds a path and does not render.
function roundedPoly(ctx, points, radiusAll) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut,radius;
// convert 2 points into vector form, polar form, and normalised
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
radius = radiusAll;
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
// for each point
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
//-----------------------------------------
// Part 1
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA < -1 ? -1 : sinA > 1 ? 1 : sinA);
//-----------------------------------------
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
if(p2.radius !== undefined){
radius = p2.radius;
}else{
radius = radiusAll;
}
//-----------------------------------------
// Part 2
halfAngle = angle / 2;
//-----------------------------------------
//-----------------------------------------
// Part 3
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
//-----------------------------------------
//-----------------------------------------
// Special part A
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
//-----------------------------------------
// Part 4
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
//-----------------------------------------
// Part 5
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
//-----------------------------------------
// Part 6
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
//-----------------------------------------
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
You may wish to add to each point a radius eg {x :10,y:10,radius:20} this will set the max radius for that point. A radius of zero will be no rounding.
The maths
The following illistration shows one of two possibilities, the angle to fit is less than 90deg, the other case (greater than 90) just has a few minor calculation differences (see code).
The corner is defined by the three points in red A, B, and C. The circle radius is r and we need to find the green points F the circle center and D and E which will define the start and end angles of the arc.
First we find the angle between the lines from B,A and B,C this is done by normalising the vectors for both lines and getting the cross product. (Commented as Part 1) We also find the angle of line BC to the line at 90deg to BA as this will help determine which side of the line to put the circle.
Now we have the angle between the lines, we know that half that angle defines the line that the center of the circle will sit F but we do not know how far that point is from B (Commented as Part 2)
There are two right triangles BDF and BEF which are identical. We have the angle at B and we know that the side DF and EF are equal to the radius of the circle r thus we can solve the triangle to get the distance to F from B
For convenience rather than calculate to F is solve for BD (Commented as Part 3) as I will move along the line BC by that distance (Commented as Part 4) then turn 90deg and move up to F (Commented as Part 5) This in the process gives the point D and moving along the line BA to E
We use points D and E and the circle center F (in their abstract form) to calculate the start and end angles of the arc. (done in the arc function part 6)
The rest of the code is concerned with the directions to move along and away from lines and which direction to sweep the arc.
The code section (special part A) uses the lengths of both lines BA and BC and compares them to the distance from BD if that distance is greater than half the line length we know the arc can not fit. I then solve the triangles to find the radius DF if the line BD is half the length of shortest line of BA and BC
Example use.
The snippet is a simple example of the above function in use. Click to add points to the canvas (needs a min of 3 points to create a polygon). You can drag points and see how the corner radius adapts to sharp corners or short lines. More info when snippet is running. To restart rerun the snippet. (there is a lot of extra code that can be ignored)
The corner radius is set to 30.
const ctx = canvas.getContext("2d");
const mouse = {
x: 0,
y: 0,
button: false,
drag: false,
dragStart: false,
dragEnd: false,
dragStartX: 0,
dragStartY: 0
}
function mouseEvents(e) {
mouse.x = e.pageX;
mouse.y = e.pageY;
const lb = mouse.button;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
if (lb !== mouse.button) {
if (mouse.button) {
mouse.drag = true;
mouse.dragStart = true;
mouse.dragStartX = mouse.x;
mouse.dragStartY = mouse.y;
} else {
mouse.drag = false;
mouse.dragEnd = true;
}
}
}
["down", "up", "move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
const pointOnLine = {x:0,y:0};
function distFromLines(x,y,minDist){
var index = -1;
const v1 = {};
const v2 = {};
const v3 = {};
const point = P2(x,y);
eachOf(polygon,(p,i)=>{
const p1 = polygon[(i + 1) % polygon.length];
v1.x = p1.x - p.x;
v1.y = p1.y - p.y;
v2.x = point.x - p.x;
v2.y = point.y - p.y;
const u = (v2.x * v1.x + v2.y * v1.y)/(v1.y * v1.y + v1.x * v1.x);
if(u >= 0 && u <= 1){
v3.x = p.x + v1.x * u;
v3.y = p.y + v1.y * u;
dist = Math.hypot(v3.y - point.y, v3.x - point.x);
if(dist < minDist){
minDist = dist;
index = i;
pointOnLine.x = v3.x;
pointOnLine.y = v3.y;
}
}
})
return index;
}
function roundedPoly(ctx, points, radius) {
var i, x, y, len, p1, p2, p3, v1, v2, sinA, sinA90, radDirection, drawDirection, angle, halfAngle, cRadius, lenOut;
var asVec = function(p, pp, v) {
v.x = pp.x - p.x;
v.y = pp.y - p.y;
v.len = Math.sqrt(v.x * v.x + v.y * v.y);
v.nx = v.x / v.len;
v.ny = v.y / v.len;
v.ang = Math.atan2(v.ny, v.nx);
}
v1 = {};
v2 = {};
len = points.length;
p1 = points[len - 1];
for (i = 0; i < len; i++) {
p2 = points[(i) % len];
p3 = points[(i + 1) % len];
asVec(p2, p1, v1);
asVec(p2, p3, v2);
sinA = v1.nx * v2.ny - v1.ny * v2.nx;
sinA90 = v1.nx * v2.nx - v1.ny * -v2.ny;
angle = Math.asin(sinA); // warning you should guard by clampling
// to -1 to 1. See function roundedPoly in answer or
// Math.asin(Math.max(-1, Math.min(1, sinA)))
radDirection = 1;
drawDirection = false;
if (sinA90 < 0) {
if (angle < 0) {
angle = Math.PI + angle;
} else {
angle = Math.PI - angle;
radDirection = -1;
drawDirection = true;
}
} else {
if (angle > 0) {
radDirection = -1;
drawDirection = true;
}
}
halfAngle = angle / 2;
lenOut = Math.abs(Math.cos(halfAngle) * radius / Math.sin(halfAngle));
if (lenOut > Math.min(v1.len / 2, v2.len / 2)) {
lenOut = Math.min(v1.len / 2, v2.len / 2);
cRadius = Math.abs(lenOut * Math.sin(halfAngle) / Math.cos(halfAngle));
} else {
cRadius = radius;
}
x = p2.x + v2.nx * lenOut;
y = p2.y + v2.ny * lenOut;
x += -v2.ny * cRadius * radDirection;
y += v2.nx * cRadius * radDirection;
ctx.arc(x, y, cRadius, v1.ang + Math.PI / 2 * radDirection, v2.ang - Math.PI / 2 * radDirection, drawDirection);
p1 = p2;
p2 = p3;
}
ctx.closePath();
}
const eachOf = (array, callback) => { var i = 0; while (i < array.length && callback(array[i], i++) !== true); };
const P2 = (x = 0, y = 0) => ({x, y});
const polygon = [];
function findClosestPointIndex(x, y, minDist) {
var index = -1;
eachOf(polygon, (p, i) => {
const dist = Math.hypot(x - p.x, y - p.y);
if (dist < minDist) {
minDist = dist;
index = i;
}
});
return index;
}
// short cut vars
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var dragPoint;
var globalTime;
var closestIndex = -1;
var closestLineIndex = -1;
var cursor = "default";
const lineDist = 10;
const pointDist = 20;
var toolTip = "";
// main update function
function update(timer) {
globalTime = timer;
cursor = "crosshair";
toolTip = "";
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
if (w !== innerWidth - 4 || h !== innerHeight - 4) {
cw = (w = canvas.width = innerWidth - 4) / 2;
ch = (h = canvas.height = innerHeight - 4) / 2;
} else {
ctx.clearRect(0, 0, w, h);
}
if (mouse.drag) {
if (mouse.dragStart) {
mouse.dragStart = false;
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex === -1){
polygon.push(dragPoint = P2(mouse.x, mouse.y));
}else{
polygon.splice(closestLineIndex+1,0,dragPoint = P2(mouse.x, mouse.y));
}
}else{
dragPoint = polygon[closestIndex];
}
}
dragPoint.x = mouse.x;
dragPoint.y = mouse.y
cursor = "none";
}else{
closestIndex = findClosestPointIndex(mouse.x,mouse.y, pointDist);
if(closestIndex === -1){
closestLineIndex = distFromLines(mouse.x,mouse.y,lineDist);
if(closestLineIndex > -1){
toolTip = "Click to cut line and/or drag to move.";
}
}else{
toolTip = "Click drag to move point.";
closestLineIndex = -1;
}
}
ctx.lineWidth = 4;
ctx.fillStyle = "#09F";
ctx.strokeStyle = "#000";
ctx.beginPath();
roundedPoly(ctx, polygon, 30);
ctx.stroke();
ctx.fill();
ctx.beginPath();
ctx.strokeStyle = "red";
ctx.lineWidth = 0.5;
eachOf(polygon, p => ctx.lineTo(p.x,p.y) );
ctx.closePath();
ctx.stroke();
ctx.strokeStyle = "orange";
ctx.lineWidth = 1;
eachOf(polygon, p => ctx.strokeRect(p.x-2,p.y-2,4,4) );
if(closestIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
dragPoint = polygon[closestIndex];
ctx.strokeRect(dragPoint.x-4,dragPoint.y-4,8,8);
cursor = "move";
}else if(closestLineIndex > -1){
ctx.strokeStyle = "red";
ctx.lineWidth = 4;
var p = polygon[closestLineIndex];
var p1 = polygon[(closestLineIndex + 1) % polygon.length];
ctx.beginPath();
ctx.lineTo(p.x,p.y);
ctx.lineTo(p1.x,p1.y);
ctx.stroke();
ctx.strokeRect(pointOnLine.x-4,pointOnLine.y-4,8,8);
cursor = "pointer";
}
if(toolTip === "" && polygon.length < 3){
toolTip = "Click to add a corners of a polygon.";
}
canvas.title = toolTip;
canvas.style.cursor = cursor;
requestAnimationFrame(update);
}
requestAnimationFrame(update);
canvas {
border: 2px solid black;
position: absolute;
top: 0px;
left: 0px;
}
<canvas id="canvas"></canvas>
I started by using #Blindman67 's answer, which works pretty well for basic static shapes.
I ran into the problem that when using the arc approach, having two points right next to each other is very different than having just one point. With two points next to each other, it won't be rounded, even if that is what your eye would expect. This is extra jarring if you are animating the polygon points.
I fixed this by using Bezier curves instead. IMO this is conceptually a little cleaner as well. I just make each corner with a quadratic curve where the control point is where the original corner was. This way, having two points in the same spot is virtually the same as only having one point.
I haven't compared performance but seems like canvas is pretty good at drawing Beziers.
As with #Blindman67 's answer, this doesn't actually draw anything so you will need to call ctx.beginPath() before and ctx.stroke() after.
/**
* Draws a polygon with rounded corners
* #param {CanvasRenderingContext2D} ctx The canvas context
* #param {Array} points A list of `{x, y}` points
* #radius {number} how much to round the corners
*/
function myRoundPolly(ctx, points, radius) {
const distance = (p1, p2) => Math.sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2)
const lerp = (a, b, x) => a + (b - a) * x
const lerp2D = (p1, p2, t) => ({
x: lerp(p1.x, p2.x, t),
y: lerp(p1.y, p2.y, t)
})
const numPoints = points.length
let corners = []
for (let i = 0; i < numPoints; i++) {
let lastPoint = points[i]
let thisPoint = points[(i + 1) % numPoints]
let nextPoint = points[(i + 2) % numPoints]
let lastEdgeLength = distance(lastPoint, thisPoint)
let lastOffsetDistance = Math.min(lastEdgeLength / 2, radius)
let start = lerp2D(
thisPoint,
lastPoint,
lastOffsetDistance / lastEdgeLength
)
let nextEdgeLength = distance(nextPoint, thisPoint)
let nextOffsetDistance = Math.min(nextEdgeLength / 2, radius)
let end = lerp2D(
thisPoint,
nextPoint,
nextOffsetDistance / nextEdgeLength
)
corners.push([start, thisPoint, end])
}
ctx.moveTo(corners[0][0].x, corners[0][0].y)
for (let [start, ctrl, end] of corners) {
ctx.lineTo(start.x, start.y)
ctx.quadraticCurveTo(ctrl.x, ctrl.y, end.x, end.y)
}
ctx.closePath()
}
Styles for joining of lines such as ctx.lineJoin="round" apply to the stroke operation on paths - which is when their width, color, pattern, dash/dotted and similar line style attributes are taken into account.
Line styles do not apply to filling the interior of a path.
So to affect line styles a stroke operation is needed. In the following adaptation of posted code, I've translated canvas output to see the result without cropping, and stroked the triangle's path but not the rectangles below it:
var ctx = document.querySelector("canvas").getContext('2d');
ctx.scale(5, 5);
ctx.translate( 18, 12);
var x = 18 / 2;
var y = 0;
var triangleWidth = 48;
var triangleHeight = 8;
// how to round this triangle??
ctx.beginPath();
ctx.moveTo(x, y);
ctx.lineTo(x + triangleWidth / 2, y + triangleHeight);
ctx.lineTo(x - triangleWidth / 2, y + triangleHeight);
ctx.closePath();
ctx.fillStyle = "#009688";
ctx.fill();
// stroke the triangle path.
ctx.lineWidth = 3;
ctx.lineJoin = "round";
ctx.strokeStyle = "orange";
ctx.stroke();
ctx.fillStyle = "#8BC34A";
ctx.fillRect(0, triangleHeight, 9, 126);
ctx.fillStyle = "#CDDC39";
ctx.fillRect(9, triangleHeight, 9, 126);
<canvas width="800" height="600"></canvas>
I need to detect collision circle with any line. I have array with verticles of polygon (x, y) and draw this polygon in loop. For detection I use algorithm, which calculate triangle height. Then I check if this height < 0, then circle collided with line.
The picture, that describe this method:
But I have unexpected result. My circle collide with transparent line (what?). I can't explain how it happens.
Demo at jsfiddle: https://jsfiddle.net/f458rdz6/1/
Function, which check the collisions and response it:
var p = polygonPoints;
for (var i = 0, n = p.length; i < n; i++) {
var start = i;
var end = (i + 1) % n;
var x0 = p[start].x;
var y0 = p[start].y;
var x1 = p[end].x;
var y1 = p[end].y;
// detection collision
var dx = x1 - x0;
var dy = y1 - y0;
var len = Math.sqrt(dx * dx + dy * dy);
var dist = (dx * (this.y - y0) - dy * (this.x - x0)) / len;
if (dist < this.radius) {
continue;
}
// calculate reflection, because collided
var wallAngle = Math.atan2(dy, dx);
var wallNormalX = Math.sin(wallAngle);
var wallNormalY = -Math.cos(wallAngle);
var d = 2 * (this.velocityX * wallNormalX + this.velocityY * wallNormalY);
this.x -= d * wallNormalX;
this.y -= d * wallNormalY;
}
var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
var polygonPoints = [
{
x: 240,
y: 130
},
{
x: 140,
y: 100
},
{
x: 180,
y: 250
},
{
x: 320,
y: 280
},
{
x: 400,
y: 50
}
];
var game = {
ball: new Ball()
};
function Ball() {
this.x = canvas.width / 2;
this.y = canvas.height - 100;
this.oldX = this.x - 1;
this.oldY = this.y + 1;
this.velocityX = 0;
this.velocityY = 0;
this.radius = 8;
};
Ball.prototype.draw = function() {
ctx.beginPath();
ctx.arc(this.x, this.y, this.radius, 0, Math.PI * 2);
ctx.fillStyle = '#0095DD';
ctx.fill();
ctx.closePath();
};
Ball.prototype.update = function() {
var x = this.x;
var y = this.y;
this.velocityX = this.x - this.oldX;
this.velocityY = this.y - this.oldY;
this.x += this.velocityX;
this.y += this.velocityY;
this.oldX = x;
this.oldY = y;
};
Ball.prototype.collision = function() {
var p = polygonPoints;
for (var i = 0, n = p.length; i < n; i++) {
var start = i;
var end = (i + 1) % n;
var x0 = p[start].x;
var y0 = p[start].y;
var x1 = p[end].x;
var y1 = p[end].y;
// detection collision
var dx = x1 - x0;
var dy = y1 - y0;
var len = Math.sqrt(dx * dx + dy * dy);
var dist = (dx * (this.y - y0) - dy * (this.x - x0)) / len;
if (dist < this.radius) {
continue;
}
// calculate reflection, because collided
var wallAngle = Math.atan2(dy, dx);
var wallNormalX = Math.sin(wallAngle);
var wallNormalY = -Math.cos(wallAngle);
var d = 2 * (this.velocityX * wallNormalX + this.velocityY * wallNormalY);
this.x -= d * wallNormalX;
this.y -= d * wallNormalY;
}
};
function drawBall() {
ctx.beginPath();
ctx.arc(x, y, ballRadius, 0, Math.PI*2);
ctx.fillStyle = "#0095DD";
ctx.fill();
ctx.closePath();
}
function drawPolygon() {
ctx.beginPath();
ctx.strokeStyle = '#333';
ctx.moveTo(polygonPoints[0].x, polygonPoints[0].y);
for (var i = 1, n = polygonPoints.length; i < n; i++) {
ctx.lineTo(polygonPoints[i].x, polygonPoints[i].y);
}
ctx.lineTo(polygonPoints[0].x, polygonPoints[0].y);
ctx.stroke();
ctx.closePath();
}
function render() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawPolygon();
game.ball.draw();
game.ball.update();
game.ball.collision();
window.requestAnimationFrame(render);
}
render();
canvas {
border: 1px solid #333;
}
<canvas id="myCanvas" width="480" height="320"></canvas>
What the problem? Maybe I need use other method for detect collision? I tried to use this one, but if my circle has high speed this method not working.
Thank you.
Circle line segment intercept
UPDATE
This answer includes line line intercept, moving a line along its normal, distance point (circle) to line, and circle line intercept.
The circle is
var circle = {
radius : 500,
center : point(1000,1000),
}
The line segment is
var line = {
p1 : point(500,500),
p2 : point(2000,1000),
}
A point is
var point = {
x : 100,
y : 100,
}
Thus the function to find the intercept of a line segment width a circle
The function returns an array of up to two point on the line segment. If no points found returns an empty array.
function inteceptCircleLineSeg(circle, line){
var a, b, c, d, u1, u2, ret, retP1, retP2, v1, v2;
v1 = {};
v2 = {};
v1.x = line.p2.x - line.p1.x;
v1.y = line.p2.y - line.p1.y;
v2.x = line.p1.x - circle.center.x;
v2.y = line.p1.y - circle.center.y;
b = (v1.x * v2.x + v1.y * v2.y);
c = 2 * (v1.x * v1.x + v1.y * v1.y);
b *= -2;
d = Math.sqrt(b * b - 2 * c * (v2.x * v2.x + v2.y * v2.y - circle.radius * circle.radius));
if(isNaN(d)){ // no intercept
return [];
}
u1 = (b - d) / c; // these represent the unit distance of point one and two on the line
u2 = (b + d) / c;
retP1 = {}; // return points
retP2 = {}
ret = []; // return array
if(u1 <= 1 && u1 >= 0){ // add point if on the line segment
retP1.x = line.p1.x + v1.x * u1;
retP1.y = line.p1.y + v1.y * u1;
ret[0] = retP1;
}
if(u2 <= 1 && u2 >= 0){ // second add point if on the line segment
retP2.x = line.p1.x + v1.x * u2;
retP2.y = line.p1.y + v1.y * u2;
ret[ret.length] = retP2;
}
return ret;
}
UPDATE
Line line intercept.
Returns a point if found else returns undefined.
function interceptLines(line,line1){
var v1, v2, c, u;
v1 = {};
v2 = {};
v3 = {};
v1.x = line.p2.x - line.p1.x; // vector of line
v1.y = line.p2.y - line.p1.y;
v2.x = line1.p2.x - line1.p1.x; //vector of line2
v2.y = line1.p2.y - line1.p1.y;
var c = v1.x * v2.y - v1.y * v2.x; // cross of the two vectors
if(c !== 0){
v3.x = line.p1.x - line1.p1.x;
v3.y = line.p1.y - line1.p1.y;
u = (v2.x * v3.y - v2.y * v3.x) / c; // unit distance of intercept point on this line
return {x : line.p1.x + v1.x * u, y : line.p1.y + v1.y * u};
}
return undefined;
}
Lift Line
Move line along its normal
function liftLine(line,dist){
var v1,l
v1 = {};
v1.x = line.p2.x - line.p1.x; // convert line to vector
v1.y = line.p2.y - line.p1.y;
l = Math.sqrt(v1.x * v1.x + v1.y * v1.y); // get length;
v1.x /= l; // Assuming you never pass zero length lines
v1.y /= l;
v1.x *= dist; // set the length
v1.y *= dist;
// move the line along its normal the required distance
line.p1.x -= v1.y;
line.p1.y += v1.x;
line.p2.x -= v1.y;
line.p2.y += v1.x;
return line; // if needed
}
Distance circle (or point) to a line segment
Returns the closest distance to the line segment. It is just the circle center that I am using. So you can replace circle with a point
function circleDistFromLineSeg(circle,line){
var v1, v2, v3, u;
v1 = {};
v2 = {};
v3 = {};
v1.x = line.p2.x - line.p1.x;
v1.y = line.p2.y - line.p1.y;
v2.x = circle.center.x - line.p1.x;
v2.y = circle.center.y - line.p1.y;
u = (v2.x * v1.x + v2.y * v1.y) / (v1.y * v1.y + v1.x * v1.x); // unit dist of point on line
if(u >= 0 && u <= 1){
v3.x = (v1.x * u + line.p1.x) - circle.center.x;
v3.y = (v1.y * u + line.p1.y) - circle.center.y;
v3.x *= v3.x;
v3.y *= v3.y;
return Math.sqrt(v3.y + v3.x); // return distance from line
}
// get distance from end points
v3.x = circle.center.x - line.p2.x;
v3.y = circle.center.y - line.p2.y;
v3.x *= v3.x; // square vectors
v3.y *= v3.y;
v2.x *= v2.x;
v2.y *= v2.y;
return Math.min(Math.sqrt(v2.y + v2.x), Math.sqrt(v3.y + v3.x)); // return smaller of two distances as the result
}
I have a sprite animation where I have set a stopping distance to it and want to calculate how much i have to slow the object down in that stopping distance to reach its new target speed. But at the moment I am not getting the correct result.
My code looks like this:
function updatePosition(obj,brake){
var delta = new Date().getTime() - obj.timer; //time since last frame
if(brake){
obj.velocity -= (Math.pow(obj.velocity,2) - Math.pow(obj.targetSpeed,2)) / (2 * obj.stopDist);
if(obj.velocity < obj.targetSpeed){
obj.velocity = obj.targetSpeed;
}
}
}
My problem is the sprite goes far past the stopping distance with a velocity well above the target speed.
I created a fiddle with a red dot travelling to a destination here: http://jsfiddle.net/4tLmz3ch/1/
When it travels the distance set by obj.stopDist it should be going the target speed which should be well before it reaches its destination. But i am obviously getting something incorrect with the math here.
Hope you can help explain my misunderstanding.
This problem is a lot simpler if you determine the desired acceleration ahead of time, and use that during each refresh. Then the entire code for each frame (excluding the drawing logic and assuming one dimension) just becomes:
function frame() {
var t = new Date().getTime();
var tDelta = t - obj.lastTime;
obj.lastTime = t;
obj.pos += obj.velocity * tDelta;
if (obj.velocity > obj.destVelocity) {
obj.velocity += obj.acceleration * tDelta;
}
draw();
setTimeout(frame, 1);
}
Given a starting and ending position and velocity, the formula for the acceleration required (assuming constant acceleration) is:
So initializing the object like this:
var obj = {
start: 10,
height: 200,
stopDist: 300,
dest: 500,
lastTime: new Date().getTime(),
velocity: 0.05,
destVelocity: 0.01,
pos: undefined,
acceleration: undefined
};
here is how we can kick this all off:
function start(){
var v0 = obj.velocity,
vf = obj.destVelocity,
x0 = obj.start,
xf = x0 + x.stopDist,
vDelta = vf - v0;
obj.pos = x0;
obj.acceleration = (2 * v0 * vDelta + vDelta * vDelta) / (2 * (xf - x0));
frame();
}
As I've done above, it's helpful to solve the 1d case first. Here is that, all put together.
var canvas = document.getElementById('canvas');
var test = document.getElementById('test');
var ctx = canvas.getContext('2d');
function drawDot(color, x, y) {
ctx.fillStyle = color;
ctx.fillRect(x - 2, y - 2, 4, 4);
}
function draw() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawDot("red", obj.pos, obj.height);
drawDot("white", obj.start, obj.height);
drawDot("green", obj.dest, obj.height);
drawDot("yellow", obj.start + obj.stopDist, obj.height);
ctx.fillText("x = " + obj.pos.toFixed(5), 20, 400);
ctx.fillText("v = " + obj.velocity.toFixed(5), 20, 420);
ctx.fillText("distance traveled: " + (obj.pos - obj.start).toFixed(2), 20, 440);
}
var obj = {
start: 10,
height: 200,
stopDist: 300,
dest: 500,
lastTime: new Date().getTime(),
velocity: 0.05,
destVelocity: 0.01,
pos: undefined,
acceleration: undefined
};
function frame() {
var t = new Date().getTime(),
tDelta = t - obj.lastTime;
obj.lastTime = t;
obj.pos += obj.velocity * tDelta;
if (obj.velocity > obj.destVelocity) {
obj.velocity += obj.acceleration * tDelta;
}
draw();
setTimeout(frame, 1);
}
function start() {
var v0 = obj.velocity,
vf = obj.destVelocity,
x0 = obj.start,
xf = x0 + obj.stopDist,
vDelta = vf - v0;
obj.pos = x0;
obj.acceleration = (2 * v0 * vDelta + vDelta * vDelta) / (2 * (xf - x0));
frame();
}
start();
#canvas{
background-color:black;
}
<canvas id="canvas" width="700" height="700"></canvas>
http://jsfiddle.net/x7842xcb/3/
And here is the 2d version (brace yourself):
var canvas = document.getElementById('canvas');
var test = document.getElementById('test');
var ctx = canvas.getContext('2d');
function drawDot(color, x, y) {
ctx.fillStyle = color;
ctx.fillRect(x - 2, y - 2, 4, 4);
}
function draw() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawDot("red", obj.pos.x, obj.pos.y);
drawDot("white", obj.start.x, obj.start.y);
drawDot("green", obj.dest.x, obj.dest.y);
drawDot("yellow", obj.stopLocation.x, obj.stopLocation.y);
var dx = obj.pos.x - obj.start.x,
dy = obj.pos.y - obj.start.y,
dist = Math.sqrt(dx * dx + dy *dy),
v = obj.velocity,
speed = Math.sqrt(v.x * v.x + v.y * v.y);
ctx.fillText("distance traveled: " + dist.toFixed(5), 20, 400);
ctx.fillText("speed: " + speed.toFixed(5), 20, 420);
}
var obj = {
start: { x: 400, y: 230 },
stopDist: 350,
dest: { x: 50, y: 330 },
lastTime: new Date().getTime(),
startSpeed: 0.05,
destSpeed: 0.1,
pos: null,
velocity: null,
destVelocity: null,
acceleration: null
};
function sign(value) {
return value > 0 ? 1 : (value < 0 ? -1 : 0);
}
function reached(start, current, dest) {
return current === dest ||
sign(current - dest) === sign(dest - start);
}
function frame() {
var t = new Date().getTime(),
tDelta = t - obj.lastTime,
v = obj.velocity,
destv = obj.destVelocity,
startv = obj.startVelocity;
obj.lastTime = t;
obj.pos.x += v.x * tDelta;
obj.pos.y += v.y * tDelta;
if (!reached(startv.x, v.x, destv.x) ||
!reached(startv.y, v.y, destv.y)) {
v.x += obj.acceleration.x * tDelta;
v.y += obj.acceleration.y * tDelta;
}
draw();
setTimeout(frame, 1);
}
function calcAcceleration(p0, pf, v0, vf) {
var vDelta = vf - v0;
return pf === p0
? 0
: (2 * v0 * vDelta + vDelta * vDelta) / (2 * (pf - p0));
}
function start() {
// positions and deltas
var start = obj.start,
dest = obj.dest,
dx = dest.x - start.x,
dy = dest.y - start.y,
totalDistance = Math.sqrt(dx * dx + dy * dy);
// x and y component ratio
var cx = dx / totalDistance,
cy = dy / totalDistance;
var stopLocation = { x: cx * obj.stopDist + start.x,
y: cy * obj.stopDist + start.y };
// velocities
var startSpeed = obj.startSpeed,
destSpeed = obj.destSpeed,
startVelocity = { x: cx * startSpeed, y: cy * startSpeed },
endVelocity = { x: cx * destSpeed, y: cy * destSpeed };
console.log(startVelocity);
console.log(endVelocity);
// acceleration
var acceleration = {
x: calcAcceleration(start.x, stopLocation.x, startVelocity.x, endVelocity.x),
y: calcAcceleration(start.y, stopLocation.y, startVelocity.y, endVelocity.y)
};
obj.pos = Object.create(start);
obj.startVelocity = startVelocity;
obj.velocity = Object.create(startVelocity);
obj.stopLocation = stopLocation;
obj.destVelocity = endVelocity;
obj.acceleration = acceleration;
frame();
}
start();
#canvas{
background-color:black;
}
<canvas id="canvas" width="700" height="700"></canvas>
http://jsfiddle.net/1r3q4oob/3/
Edit Regarding the fix I made after the fact:
The problem with my original implementation was that it would only update the velocity if both the X and Y components of the current velocity were greater than the target velocity. This would prevent the correct behavior if:
The X or Y component of both the start and end velocity were 0 (i.e. if it were travelling perfectly horizontally or vertically)
The X or Y component of the start and end velocity were negative (i.e. if it were travelling up and to the left)
The velocity needed to increase rather than decrease (i.e. the dot were speeding up to a target velocity)
I resolved this with the addition of the reached() function, which basically returns true if (a) the destination velocity is between the current velocity and the start velocity (i.e. the current velocity has gone past the destination velocity), or (b) the current velocity is equal to the destination velocity.