how to use tanf from c++ in javascript - javascript

i want to use tanf but i cant find code in js that this does
tanf is used in c and c++ converted the code from c++ to js
i try to make a 3d view without opengl or other librarys
just for fun :P
sorry for bad english :$
my code
var Vector3 = function(X, Y, Z) {
this.X = X;
this.Y = Y;
this.Z = Z;
};
var Matrix = {
CreateProjection: function(fov, aspect, near, far) {
var bottom = -near * Math.tanf(0.5 * fov * Math.PI / 180.0);
var top = -bottom;
var left = aspect * bottom;
var right = -left;
return Matrix.CreateFrustum(left, right, bottom, top, near, far);
},
CreateFrustum: function(left, right, bottom, top, near, far) {
var dx = right - left;
var dy = bottom - top;
var dz = far - near;
var mx = 0.5 * (left + right);
var my = 0.5 * (bottom + top);
var mz = 0.5 * (near + far);
var n = near;
var nf = near * far;
var matrix = [2.0 * n / dx, 0.0, 2.0 * mx / dx, 0.0,
0.0, 2.0 * n / dy, 2.0 * my / dy, 0.0,
0.0, 0.0, -2.0 * mz / dz, -2.0 * nf / dz,
0.0, 0.0, -1.0, 0.0
];
return matrix;
},
Translate: function(vector) {
var matrix = [
1, 0, 0, vector.X,
0, 1, 0, vector.Y,
0, 0, 1, vector.Z,
0, 0, 0, 1
];
return matrix;
},
MatrixToVector: function(matrix) {
var vectornew = [0, 0, 0, 0];
for (var i = 0; i < 4; i++) {
//next row
for (var c = 0; c < 4; c++) {
if (matrix[(i * 4) + c] != 0) {
vectornew[i] += matrix[(i * 4) + c];
}
}
}
return new Vector3(vectornew[0], vectornew[1], vectornew[3]);
}
};

There is no tanf in JavaScript, as all numbers are doubles anyway. Use Math.tan instead.

You could use the Math.tan function.

Related

WebGL fade-out does not work for white color

I am trying to adapt a webgl code that generates firework explositions, where projectiles fade out from canvas by means of painting over with 0.1 alpha (as I understand it).
However, this technique somehow doesn't work for the explosition of white color.
You can see that white projectiles leave traces and never fully disappear, while other colors work fine (or maybe they also don't work, but I don't see the traces on black background).
Can somebody help me understand what is happening here?
// from https://codepen.io/towc/pen/oBvYEL
var gl = c.getContext('webgl2', {preserveDrawingBuffer: true})
, w = c.width = window.innerWidth
, h = c.height = window.innerHeight
, webgl = {}
, opts = {
projectileAlpha: .8,
projectileLineWidth: 2,
fireworkAngleSpan: .5,
baseFireworkVel: 3,
gravity: .02,
xFriction: .995,
baseShardVel: 1,
addedShardVel: .2,
fireworks: 1, // 1 firework for each 10x10 pixels,
baseShardsParFirework: 10,
addedShardsParFirework: 10,
shardFireworkVelMultiplier: .3
}
// updated to use WebGL2 and GL ES 3.0
// pass full color instead of just hue
// remove moving projectile, keep only the explosion
webgl.vertexShaderSource = `#version 300 es
uniform int u_mode;
uniform vec2 u_res;
in vec4 a_data;
out vec4 v_color;
vec3 c2rgb(int color_int){
int r = color_int >> 16;
int g = color_int >> 8 & 0xff;
int b = color_int & 0xff;
return vec3(r/255, g/255, b/255);
}
void clear(){
gl_Position = vec4( a_data.xy, 0, 1 );
v_color = vec4( 0, 0, 0, a_data.w );
}
void draw(){
gl_Position = vec4( vec2( 1, -1 ) * ( ( a_data.xy / u_res ) * 2. - 1. ), 0, 1 );
v_color = vec4( 1, 1, 1, a_data.w );
}
void main(){
if( u_mode == 0 )
draw();
else
clear();
}
`;
webgl.fragmentShaderSource = `#version 300 es
precision mediump float;
in vec4 v_color;
out vec4 fragColor;
void main(){
fragColor = v_color;
}
`;
webgl.vertexShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(webgl.vertexShader, webgl.vertexShaderSource);
gl.compileShader(webgl.vertexShader);
if (!gl.getShaderParameter(webgl.vertexShader, gl.COMPILE_STATUS))
console.log(gl.getShaderInfoLog(webgl.vertexShader));
webgl.fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(webgl.fragmentShader, webgl.fragmentShaderSource);
gl.compileShader(webgl.fragmentShader);
if (!gl.getShaderParameter(webgl.fragmentShader, gl.COMPILE_STATUS))
console.log(gl.getShaderInfoLog(webgl.fragmentShader));
webgl.shaderProgram = gl.createProgram();
gl.attachShader(webgl.shaderProgram, webgl.vertexShader);
gl.attachShader(webgl.shaderProgram, webgl.fragmentShader);
gl.linkProgram(webgl.shaderProgram);
gl.useProgram(webgl.shaderProgram);
webgl.dataAttribLoc = gl.getAttribLocation(webgl.shaderProgram, 'a_data');
webgl.dataBuffer = gl.createBuffer();
gl.enableVertexAttribArray(webgl.dataAttribLoc);
gl.bindBuffer(gl.ARRAY_BUFFER, webgl.dataBuffer);
gl.vertexAttribPointer(webgl.dataAttribLoc, 4, gl.FLOAT, false, 0, 0);
webgl.resUniformLoc = gl.getUniformLocation(webgl.shaderProgram, 'u_res');
webgl.modeUniformLoc = gl.getUniformLocation(webgl.shaderProgram, 'u_mode');
gl.viewport(0, 0, w, h);
gl.uniform2f(webgl.resUniformLoc, w, h);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.enable(gl.BLEND);
gl.lineWidth(opts.projectileLineWidth);
webgl.data = [];
webgl.clear = function () {
gl.uniform1i(webgl.modeUniformLoc, 1);
let a = .1;
webgl.data = [
-1, -1, 0, 0.1,
1, -1, 0, 0.1,
-1, 1, 0, 0.1,
-1, 1, 0, 0.1,
1, -1, 0, 0.1,
1, 1, 0, 0.1
];
webgl.draw(gl.TRIANGLES);
gl.uniform1i(webgl.modeUniformLoc, 0);
webgl.data.length = 0;
}
webgl.draw = function (glType) {
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(webgl.data), gl.STATIC_DRAW);
gl.drawArrays(glType, 0, webgl.data.length / 4);
}
let fireworks = []
, tick = 0
, sins = []
, coss = []
, maxShardsParFirework = opts.baseShardsParFirework + opts.addedShardsParFirework
, tau = 6.283185307179586476925286766559;
for (let i = 0; i < maxShardsParFirework; ++i) {
sins[i] = Math.sin(tau * i / maxShardsParFirework);
coss[i] = Math.cos(tau * i / maxShardsParFirework);
}
function Firework() {
this.reset();
this.shards = [];
for (let i = 0; i < maxShardsParFirework; ++i)
this.shards.push(new Shard(this));
}
Firework.prototype.reset = function () {
let angle = -Math.PI / 2 + (Math.random() - .5) * opts.fireworkAngleSpan
, vel = opts.baseFireworkVel * Math.random();
this.mode = 0;
this.vx = vel * Math.cos(angle);
this.vy = vel * Math.sin(angle);
this.x = Math.random() * w;
this.y = Math.random() * h;
this.hue = 0;
let ph = this.hue
, px = this.x
, py = this.y;
webgl.data.push(
px, py, ph, opts.projectileAlpha * .2,
this.x, this.y, this.hue, opts.projectileAlpha * .2);
}
Firework.prototype.step = function () {
if (this.mode === 0) {
this.mode = 1;
this.shardAmount = opts.baseShardsParFirework + opts.addedShardsParFirework * Math.random() | 0;
let baseAngle = Math.random() * tau
, x = Math.cos(baseAngle)
, y = Math.sin(baseAngle)
, sin = sins[this.shardAmount]
, cos = coss[this.shardAmount];
for (let i = 0; i < this.shardAmount; ++i) {
let vel = opts.baseShardVel + opts.addedShardVel * Math.random();
this.shards[i].reset(x * vel, y * vel)
let X = x;
x = x * cos - y * sin;
y = y * cos + X * sin;
}
}
if (this.mode === 1) {
this.ph = this.hue
this.hue = 0;
let allDead = true;
for (let i = 0; i < this.shardAmount; ++i) {
let shard = this.shards[i];
if (!shard.dead) {
shard.step();
allDead = false;
}
}
if (allDead)
this.reset();
}
}
function Shard(parent) {
this.parent = parent;
}
Shard.prototype.reset = function (vx, vy) {
this.x = this.parent.x;
this.y = this.parent.y;
this.vx = this.parent.vx * opts.shardFireworkVelMultiplier + vx;
this.vy = this.parent.vy * opts.shardFireworkVelMultiplier + vy;
this.starty = this.y;
this.dead = false;
this.tick = 1;
}
Shard.prototype.step = function () {
this.tick += .05;
let px = this.x
, py = this.y;
this.x += this.vx *= opts.xFriction;
this.y += this.vy += opts.gravity;
var proportion = 1 - (this.y - this.starty) / (h - this.starty);
webgl.data.push(
px, py, this.parent.ph, opts.projectileAlpha / this.tick,
this.x, this.y, this.parent.hue, opts.projectileAlpha / this.tick);
if (this.y > h)
this.dead = true;
}
function anim() {
window.requestAnimationFrame(anim);
webgl.clear();
++tick;
if (fireworks.length < opts.fireworks)
fireworks.push(new Firework);
fireworks.map(function (firework) {
firework.step();
});
webgl.draw(gl.LINES);
}
anim();
window.addEventListener('resize', function () {
w = c.width = window.innerWidth;
h = c.height = window.innerHeight;
gl.viewport(0, 0, w, h);
gl.uniform2f(webgl.resUniformLoc, w, h);
});
body {
overflow: hidden;
margin:0;
}
#c {
position: absolute;
top: 0;
left: 0;
background-color: #111;
}
<canvas id="c"> </canvas>

Moving entire shape to point on circle webgl

I have the following code trying to draw a wreath by putting stars on points on a circle. I am able to draw one star, but when I try to draw a wreath it only draws one branch around the circle, or right now on one point on the circle. I know there is a problem with how I am nesting the modelViewMatrices I can't think of the proper way to go about doing the transformation. I need to draw the star and then translate the entire star.
function DrawWreath()
{
var radius = 0.5;
for (var i = 0; i < 1; i++) {
var theta = i * 30;
var x = radius * Math.cos(theta);
var y = radius * Math.sin(theta);
var t = translate(x, y, 0);
if (modelViewMatrix) {
modelViewMatrix = mult(modelViewMatrix, t) ;
} else {
modelViewMatrix = t;
}
modelViewStack.push(modelViewMatrix);
DrawOneStar();
modelViewMatrix = modelViewStack.pop();
}
}
function DrawOneStar()
{
// draw the full star
for (var i=1; i <= 5; i++) {
r = rotate(72*i, 0, 0, 1);
if (modelViewMatrix) {
modelViewMatrix = mult(r, modelViewMatrix) ;
} else {
modelViewMatrix = r;
}
modelViewMatrix = r;
DrawOneBranch();
}
}
function DrawOneBranch()
{
var s;
// one branch
s = scale4(1/16, 1/16, 1);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, s);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.drawArrays( gl.LINE_LOOP, 0, vertices.length);
/*
modelViewMatrix = modelViewStack.pop();
//s = scale4(1/8, -1/8, 1);
modelViewMatrix = mult(modelViewMatrix, s);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.drawArrays( gl.LINE_STRIP, 0, vertices.length);
*/
}
Lots of issues with the code
The code in DrawOneStar is rotating on the left
mult(r, modelViewMatrix) // ???
Seems like you want this
mult(modelViewMatrix, r)
just like you did with translate and scale
The code in DrawOneStar is not saving the matrix
that means you either want to fix the code so it saves
the matrix or, you want to rotate a fixed amount.
As the code is now it's rotating 72, then rotating 72 + 144, then rotating
72 + 144 + 216 because each time it's rotating the matrix it previously
rotated
The code in DrawOneBranch is not popping the matrix
That line is commented out
theta is using degrees
Most math libraries use radians so this code is probably not doing
what you expect
var theta = i * 30;
var x = radius * Math.cos(theta);
var y = radius * Math.sin(theta);
Math.sin and Math.cos require radians not degrees.
The outer loop is only doing one iteration
for (var i = 0; i < 1; i++) { // ???
Other suggestions
use a better math library. Whatever math library requires calling a flatten function to prepare the matrices to be usable by WebGL will be slower than one that doesn't. Also a library that takes radians for rotation and field of view means it will match the other built in math functions like Math.cos etc...
Put a matrix in modelViewMatrix to start. Then you can remove all the checks for if there is a matrix or not
When looping and computing a value consider using normalized numbers (numbers that go from 0 to 1) then computing other values based on that.
For example the code has theta = i * 30 in the outer loop and in the next loop there's rotate(i * 72, ...) but if you change the number of iterations then you also have to change those numbers to match.
Instead first compute a value that goes from to 0 to 1 based on the loop. Example
const numStars = 10;
for (let i = 0; i < numStars; ++i) {
const l = i / numStars; // goes from 0 to 1
Then use that value to compute the angle;
const theta = l * 360; // or l * Math.PI * 2 for radians
Similarly
const numRotations = 5;
for (let i = 0; i < numRotations; ++i) {
const l = i / numRotations; // goes from 0 to 1
rotate(i * 360, ....
That way you can change numStars and numRotations easily and not
have to change any other code
function DrawWreath()
{
var radius = 0.5;
for (var i = 0; i < 10; i++) {
var theta = i / 10 * Math.PI * 2;
var x = radius * Math.cos(theta);
var y = radius * Math.sin(theta);
var t = translate(x, y, 0);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, t) ;
DrawOneStar();
modelViewMatrix = modelViewStack.pop();
}
}
function DrawOneStar()
{
// draw the full star
for (var i=1; i <= 5; i++) {
var r = rotate(72, 0, 0, 1);
modelViewMatrix = mult(modelViewMatrix, r) ;
DrawOneBranch();
}
}
function DrawOneBranch()
{
var s;
// one branch
s = scale4(1/16, 1/16, 1);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, s);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.drawArrays( gl.LINE_LOOP, 0, vertices.length);
modelViewMatrix = modelViewStack.pop();
/*
//s = scale4(1/8, -1/8, 1);
modelViewMatrix = mult(modelViewMatrix, s);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.drawArrays( gl.LINE_STRIP, 0, vertices.length);
*/
}
function flatten(m) {
return m;
}
function translate(x, y, z) {
return m4.translation([x, y, z]);
}
function scale4(x, y, z) {
return m4.scaling([x, y, z]);
}
function rotate(a, x, y, z) {
return m4.axisRotation([x, y, z], a * Math.PI / 180);
}
function mult(a, b) {
return m4.multiply(a, b);
}
const m4 = twgl.m4;
const gl = document.querySelector("canvas").getContext("webgl");
const modelViewStack = [];
let modelViewMatrix = m4.identity();
const vs = `
attribute vec4 position;
uniform mat4 u_projectionMatrix;
uniform mat4 u_modelViewMatrix;
void main() {
gl_Position = u_projectionMatrix * u_modelViewMatrix * position;
}
`;
const fs = `
void main() { gl_FragColor = vec4(1,0,0,1); }
`;
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
0, 1,
-.33, 0,
.33, 0,
],
},
});
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.useProgram(programInfo.program);
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const scale = 1;
twgl.setUniforms(programInfo, {
u_projectionMatrix: m4.ortho(
-aspect / scale, aspect / scale, -1 / scale, 1 / scale, -1, 1),
u_modelViewMatrix: m4.identity(),
});
const vertices = { length: 3, };
const modelViewMatrixLoc = gl.getUniformLocation(programInfo.program, "u_modelViewMatrix");
DrawWreath();
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/3.x/twgl-full.min.js"></script>
<canvas></canvas>
One more thing, rather than manually computing a position on a cirlce you could use the matrix function for that as well, rotate, then translate
function DrawWreath()
{
const radius = 0.5;
const numStars = 20;
for (let i = 0; i < numStars; ++i) {
const l = i / numStars;
const theta = l * Math.PI * 2;
const r = rotateInRadians(theta, 0, 0, 1);
const t = translate(radius, 0, 0);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, r);
modelViewMatrix = mult(modelViewMatrix, t);
DrawOneStar();
modelViewMatrix = modelViewStack.pop();
}
}
function DrawOneStar()
{
// draw the full star
const numParts = 6;
for (let i = 0; i < numParts; ++i) {
const l = i / numParts;
const r = rotateInRadians(l * Math.PI * 2, 0, 0, 1);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, r) ;
DrawOneBranch();
modelViewMatrix = modelViewStack.pop();
}
}
function DrawOneBranch()
{
var s;
// one branch
s = scale4(1/16, 1/16, 1);
modelViewStack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, s);
gl.uniformMatrix4fv(modelViewMatrixLoc, false, flatten(modelViewMatrix));
gl.drawArrays( gl.LINE_LOOP, 0, vertices.length);
modelViewMatrix = modelViewStack.pop();
}
function flatten(m) {
return m;
}
function translate(x, y, z) {
return m4.translation([x, y, z]);
}
function scale4(x, y, z) {
return m4.scaling([x, y, z]);
}
function rotate(a, x, y, z) {
return m4.axisRotation([x, y, z], a * Math.PI / 180);
}
function rotateInRadians(a, x, y, z) {
return m4.axisRotation([x, y, z], a);
}
function mult(a, b) {
return m4.multiply(a, b);
}
const m4 = twgl.m4;
const gl = document.querySelector("canvas").getContext("webgl");
const modelViewStack = [];
let modelViewMatrix = m4.identity();
const vs = `
attribute vec4 position;
uniform mat4 u_projectionMatrix;
uniform mat4 u_modelViewMatrix;
void main() {
gl_Position = u_projectionMatrix * u_modelViewMatrix * position;
}
`;
const fs = `
void main() { gl_FragColor = vec4(1,0,0,1); }
`;
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
0, 1,
-.33, 0,
.33, 0,
],
},
});
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.useProgram(programInfo.program);
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const scale = 1;
twgl.setUniforms(programInfo, {
u_projectionMatrix: m4.ortho(
-aspect / scale, aspect / scale, -1 / scale, 1 / scale, -1, 1),
u_modelViewMatrix: m4.identity(),
});
const vertices = { length: 3, };
const modelViewMatrixLoc = gl.getUniformLocation(programInfo.program, "u_modelViewMatrix");
DrawWreath();
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<script src="https://twgljs.org/dist/3.x/twgl-full.min.js"></script>
<canvas></canvas>
You might find these articles useful

how to add ondrag mouse event in this example

I want a mouse drager event when i drag and move the mouse accordingly with the velocity of mouse movement it shuld rotate and slowly stop.
this html and javascript will give a cube which rotates at time interval 33
window.onload = startDemo;
function Point3D(x,y,z) {
this.x = x;
this.y = y;
this.z = z;
this.rotateX = function(angle) {
var rad, cosa, sina, y, z
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
y = this.y * cosa - this.z * sina
z = this.y * sina + this.z * cosa
return new Point3D(this.x, y, z)
}
this.rotateY = function(angle) {
var rad, cosa, sina, x, z
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
z = this.z * cosa - this.x * sina
x = this.z * sina + this.x * cosa
return new Point3D(x,this.y, z)
}
this.rotateZ = function(angle) {
var rad, cosa, sina, x, y
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
x = this.x * cosa - this.y * sina
y = this.x * sina + this.y * cosa
return new Point3D(x, y, this.z)
}
this.project = function(viewWidth, viewHeight, fov, viewDistance) {
var factor, x, y
factor = fov / (viewDistance + this.z)
x = this.x * factor + viewWidth / 2
y = this.y * factor + viewHeight / 2
return new Point3D(x, y, this.z)
}
}
var vertices = [
new Point3D(-1,1,-1),
new Point3D(1,1,-1),
new Point3D(1,-1,-1),
new Point3D(-1,-1,-1),
new Point3D(-1,1,1),
new Point3D(1,1,1),
new Point3D(1,-1,1),
new Point3D(-1,-1,1)
];
// Define the vertices that compose each of the 6 faces. These numbers are
// indices to the vertex list defined above.
var faces = [[0,1,2,3],[1,5,6,2],[5,4,7,6],[4,0,3,7],[0,4,5,1],[3,2,6,7]];
// Define the colors for each face.
var colors = [[255,0,0],[0,255,0],[0,0,255],[255,255,0],[0,255,255],[255,0,255]];
var angle = 0;
/* Constructs a CSS RGB value from an array of 3 elements. */
function arrayToRGB(arr) {
if( arr.length == 3 ) {
return "rgb(" + arr[0] + "," + arr[1] + "," + arr[2] + ")";
}
return "rgb(0,0,0)";
}
function startDemo() {
canvas = document.getElementById("thecanvas");
if( canvas && canvas.getContext ) {
ctx = canvas.getContext("2d");
}setInterval(loop,33);
}
function loop() {
var t = new Array();
ctx.fillStyle = "rgb(0,0,0)";
ctx.fillRect(0,0,400,250);
for( var i = 0; i < vertices.length; i++ ) {
var v = vertices[i];
var r = v.rotateZ(angle).rotateX(angle);
var p = r.project(400,250,200,4);
t.push(p)
}
var avg_z = new Array();
for( var i = 0; i < faces.length; i++ ) {
var f = faces[i];
avg_z[i] = {"index":i, "z":(t[f[0]].z + t[f[1]].z + t[f[2]].z + t[f[3]].z) / 4.0};
}
avg_z.sort(function(a,b) {
return b.z - a.z;
});
for( var i = 0; i < faces.length; i++ ) {
var f = faces[avg_z[i].index]
ctx.fillStyle = arrayToRGB(colors[avg_z[i].index]);
ctx.beginPath()
ctx.moveTo(t[f[0]].x,t[f[0]].y)
ctx.lineTo(t[f[1]].x,t[f[1]].y)
ctx.lineTo(t[f[2]].x,t[f[2]].y)
ctx.lineTo(t[f[3]].x,t[f[3]].y)
ctx.closePath()
ctx.fill()
}
angle += 2
}
<!DOCTYPE html>
<html>
<head>
<title>HTML5 Experiment: A Rotating Solid Cube</title>
</head>
<body>
<canvas id="thecanvas" width="500" height="250">
Your brows<a href=#>Click here</a> to watch the video.
</canvas>
</body>
</html>
please help me with this code
You can use
onmouseover
Follow the link and you will be understand.
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_onmouseover
Try this Code
<!doctype html>
<html>
<body>
<canvas width = "570" height = "570" id = "my_Canvas"></canvas>
<script>
/*============= Creating a canvas ======================*/
var canvas = document.getElementById('my_Canvas');
gl = canvas.getContext('experimental-webgl');
/*========== Defining and storing the geometry ==========*/
var vertices = [
-1,-1,-1, 1,-1,-1, 1, 1,-1, -1, 1,-1,
-1,-1, 1, 1,-1, 1, 1, 1, 1, -1, 1, 1,
-1,-1,-1, -1, 1,-1, -1, 1, 1, -1,-1, 1,
1,-1,-1, 1, 1,-1, 1, 1, 1, 1,-1, 1,
-1,-1,-1, -1,-1, 1, 1,-1, 1, 1,-1,-1,
-1, 1,-1, -1, 1, 1, 1, 1, 1, 1, 1,-1,
];
var colors = [
5,3,7, 5,3,7, 5,3,7, 5,3,7,
1,1,3, 1,1,3, 1,1,3, 1,1,3,
0,0,1, 0,0,1, 0,0,1, 0,0,1,
1,0,0, 1,0,0, 1,0,0, 1,0,0,
1,1,0, 1,1,0, 1,1,0, 1,1,0,
0,1,0, 0,1,0, 0,1,0, 0,1,0
];
var indices = [
0,1,2, 0,2,3, 4,5,6, 4,6,7,
8,9,10, 8,10,11, 12,13,14, 12,14,15,
16,17,18, 16,18,19, 20,21,22, 20,22,23
];
// Create and store data into vertex buffer
var vertex_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
// Create and store data into color buffer
var color_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);
// Create and store data into index buffer
var index_buffer = gl.createBuffer ();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), gl.STATIC_DRAW);
/*=================== SHADERS =================== */
var vertCode = 'attribute vec3 position;'+
'uniform mat4 Pmatrix;'+
'uniform mat4 Vmatrix;'+
'uniform mat4 Mmatrix;'+
'attribute vec3 color;'+//the color of the point
'varying vec3 vColor;'+
'void main(void) { '+//pre-built function
'gl_Position = Pmatrix*Vmatrix*Mmatrix*vec4(position, 1.);'+
'vColor = color;'+
'}';
var fragCode = 'precision mediump float;'+
'varying vec3 vColor;'+
'void main(void) {'+
'gl_FragColor = vec4(vColor, 1.);'+
'}';
var vertShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertShader, vertCode);
gl.compileShader(vertShader);
var fragShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragShader, fragCode);
gl.compileShader(fragShader);
var shaderprogram = gl.createProgram();
gl.attachShader(shaderprogram, vertShader);
gl.attachShader(shaderprogram, fragShader);
gl.linkProgram(shaderprogram);
/*======== Associating attributes to vertex shader =====*/
var _Pmatrix = gl.getUniformLocation(shaderprogram, "Pmatrix");
var _Vmatrix = gl.getUniformLocation(shaderprogram, "Vmatrix");
var _Mmatrix = gl.getUniformLocation(shaderprogram, "Mmatrix");
gl.bindBuffer(gl.ARRAY_BUFFER, vertex_buffer);
var _position = gl.getAttribLocation(shaderprogram, "position");
gl.vertexAttribPointer(_position, 3, gl.FLOAT, false,0,0);
gl.enableVertexAttribArray(_position);
gl.bindBuffer(gl.ARRAY_BUFFER, color_buffer);
var _color = gl.getAttribLocation(shaderprogram, "color");
gl.vertexAttribPointer(_color, 3, gl.FLOAT, false,0,0) ;
gl.enableVertexAttribArray(_color);
gl.useProgram(shaderprogram);
/*==================== MATRIX ====================== */
function get_projection(angle, a, zMin, zMax) {
var ang = Math.tan((angle*.5)*Math.PI/180);//angle*.5
return [
0.5/ang, 0 , 0, 0,
0, 0.5*a/ang, 0, 0,
0, 0, -(zMax+zMin)/(zMax-zMin), -1,
0, 0, (-2*zMax*zMin)/(zMax-zMin), 0
];
}
var proj_matrix = get_projection(40, canvas.width/canvas.height, 1, 100);
var mo_matrix = [ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 ];
var view_matrix = [ 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 ];
view_matrix[14] = view_matrix[14]-6;
/*================= Mouse events ======================*/
var AMORTIZATION = 0.95;
var drag = false;
var old_x, old_y;
var dX = 0, dY = 0;
var mouseDown = function(e) {
drag = true;
old_x = e.pageX, old_y = e.pageY;
e.preventDefault();
return false;
};
var mouseUp = function(e){
drag = false;
};
var mouseMove = function(e) {
if (!drag) return false;
dX = (e.pageX-old_x)*2*Math.PI/canvas.width,
dY = (e.pageY-old_y)*2*Math.PI/canvas.height;
THETA+= dX;
PHI+=dY;
old_x = e.pageX, old_y = e.pageY;
e.preventDefault();
};
canvas.addEventListener("mousedown", mouseDown, false);
canvas.addEventListener("mouseup", mouseUp, false);
canvas.addEventListener("mouseout", mouseUp, false);
canvas.addEventListener("mousemove", mouseMove, false);
/*=========================rotation================*/
function rotateX(m, angle) {
var c = Math.cos(angle);
var s = Math.sin(angle);
var mv1 = m[1], mv5 = m[5], mv9 = m[9];
m[1] = m[1]*c-m[2]*s;
m[5] = m[5]*c-m[6]*s;
m[9] = m[9]*c-m[10]*s;
m[2] = m[2]*c+mv1*s;
m[6] = m[6]*c+mv5*s;
m[10] = m[10]*c+mv9*s;
}
function rotateY(m, angle) {
var c = Math.cos(angle);
var s = Math.sin(angle);
var mv0 = m[0], mv4 = m[4], mv8 = m[8];
m[0] = c*m[0]+s*m[2];
m[4] = c*m[4]+s*m[6];
m[8] = c*m[8]+s*m[10];
m[2] = c*m[2]-s*mv0;
m[6] = c*m[6]-s*mv4;
m[10] = c*m[10]-s*mv8;
}
/*=================== Drawing =================== */
var THETA = 0,
PHI = 0;
var time_old = 0;
var animate = function(time) {
var dt = time-time_old;
if (!drag) {
dX *= AMORTIZATION, dY*=AMORTIZATION;
THETA+=dX, PHI+=dY;
}
//set model matrix to I4
mo_matrix[0] = 1, mo_matrix[1] = 0, mo_matrix[2] = 0,
mo_matrix[3] = 0,
mo_matrix[4] = 0, mo_matrix[5] = 1, mo_matrix[6] = 0,
mo_matrix[7] = 0,
mo_matrix[8] = 0, mo_matrix[9] = 0, mo_matrix[10] = 1,
mo_matrix[11] = 0,
mo_matrix[12] = 0, mo_matrix[13] = 0, mo_matrix[14] = 0,
mo_matrix[15] = 1;
rotateY(mo_matrix, THETA);
rotateX(mo_matrix, PHI);
time_old = time;
gl.enable(gl.DEPTH_TEST);
// gl.depthFunc(gl.LEQUAL);
gl.clearColor(0.5, 0.5, 0.5, 0.9);
gl.clearDepth(1.0);
gl.viewport(0.0, 0.0, canvas.width, canvas.height);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.uniformMatrix4fv(_Pmatrix, false, proj_matrix);
gl.uniformMatrix4fv(_Vmatrix, false, view_matrix);
gl.uniformMatrix4fv(_Mmatrix, false, mo_matrix);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, index_buffer);
gl.drawElements(gl.TRIANGLES, indices.length, gl.UNSIGNED_SHORT, 0);
window.requestAnimationFrame(animate);
}
animate(0);
</script>
</body>
</html>
window.onload = startDemo;
function Point3D(x,y,z) {
this.x = x;
this.y = y;
this.z = z;
this.rotateX = function(angle) {
var rad, cosa, sina, y, z
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
y = this.y * cosa - this.z * sina
z = this.y * sina + this.z * cosa
return new Point3D(this.x, y, z)
}
this.rotateY = function(angle) {
var rad, cosa, sina, x, z
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
z = this.z * cosa - this.x * sina
x = this.z * sina + this.x * cosa
return new Point3D(x,this.y, z)
}
this.rotateZ = function(angle) {
var rad, cosa, sina, x, y
rad = angle * Math.PI / 180
cosa = Math.cos(rad)
sina = Math.sin(rad)
x = this.x * cosa - this.y * sina
y = this.x * sina + this.y * cosa
return new Point3D(x, y, this.z)
}
this.project = function(viewWidth, viewHeight, fov, viewDistance) {
var factor, x, y
factor = fov / (viewDistance + this.z)
x = this.x * factor + viewWidth / 2
y = this.y * factor + viewHeight / 2
return new Point3D(x, y, this.z)
}
}
var vertices = [
new Point3D(-1,1,-1),
new Point3D(1,1,-1),
new Point3D(1,-1,-1),
new Point3D(-1,-1,-1),
new Point3D(-1,1,1),
new Point3D(1,1,1),
new Point3D(1,-1,1),
new Point3D(-1,-1,1)
];
// Define the vertices that compose each of the 6 faces. These numbers are
// indices to the vertex list defined above.
var faces = [[0,1,2,3],[1,5,6,2],[5,4,7,6],[4,0,3,7],[0,4,5,1],[3,2,6,7]];
// Define the colors for each face.
var colors = [[255,0,0],[0,255,0],[0,0,255],[255,255,0],[0,255,255],[255,0,255]];
var angle = 0;
/* Constructs a CSS RGB value from an array of 3 elements. */
function arrayToRGB(arr) {
if( arr.length == 3 ) {
return "rgb(" + arr[0] + "," + arr[1] + "," + arr[2] + ")";
}
return "rgb(0,0,0)";
}
function startDemo() {
canvas = document.getElementById("thecanvas");
if( canvas && canvas.getContext ) {
ctx = canvas.getContext("2d");
}setInterval(loop,33);
}
function loop() {
var t = new Array();
ctx.fillStyle = "rgb(0,0,0)";
ctx.fillRect(0,0,400,250);
for( var i = 0; i < vertices.length; i++ ) {
var v = vertices[i];
var r = v.rotateZ(angle).rotateX(angle);
var p = r.project(400,250,200,4);
t.push(p)
}
var avg_z = new Array();
for( var i = 0; i < faces.length; i++ ) {
var f = faces[i];
avg_z[i] = {"index":i, "z":(t[f[0]].z + t[f[1]].z + t[f[2]].z + t[f[3]].z) / 4.0};
}
avg_z.sort(function(a,b) {
return b.z - a.z;
});
for( var i = 0; i < faces.length; i++ ) {
var f = faces[avg_z[i].index]
ctx.fillStyle = arrayToRGB(colors[avg_z[i].index]);
ctx.beginPath()
ctx.moveTo(t[f[0]].x,t[f[0]].y)
ctx.lineTo(t[f[1]].x,t[f[1]].y)
ctx.lineTo(t[f[2]].x,t[f[2]].y)
ctx.lineTo(t[f[3]].x,t[f[3]].y)
ctx.closePath()
ctx.fill()
}
angle += 2
}
<!DOCTYPE html>
<html>
<head>
<title>HTML5 Experiment: A Rotating Solid Cube</title>
</head>
<body>
<canvas id="thecanvas" width="500" height="250">
Your brows<a href=#>Click here</a> to watch the video.
</canvas>
</body>
</html>

Canvas Rotating Star Field

I'm taking the following approach to animate a star field across the screen, but I'm stuck for the next part.
JS
var c = document.getElementById('stars'),
ctx = c.getContext("2d"),
t = 0; // time
c.width = 300;
c.height = 300;
var w = c.width,
h = c.height,
z = c.height,
v = Math.PI; // angle of vision
(function animate() {
Math.seedrandom('bg');
ctx.globalAlpha = 1;
for (var i = 0; i <= 100; i++) {
var x = Math.floor(Math.random() * w), // pos x
y = Math.floor(Math.random() * h), // pos y
r = Math.random()*2 + 1, // radius
a = Math.random()*0.5 + 0.5, // alpha
// linear
d = (r*a), // depth
p = t*d; // pixels per t
x = x - p; // movement
x = x - w * Math.floor(x / w); // go around when x < 0
(function draw(x,y) {
var gradient = ctx.createRadialGradient(x, y, 0, x + r, y + r, r * 2);
gradient.addColorStop(0, 'rgba(255, 255, 255, ' + a + ')');
gradient.addColorStop(1, 'rgba(0, 0, 0, 0)');
ctx.beginPath();
ctx.arc(x, y, r, 0, 2*Math.PI);
ctx.fillStyle = gradient;
ctx.fill();
return draw;
})(x, y);
}
ctx.restore();
t += 1;
requestAnimationFrame(function() {
ctx.clearRect(0, 0, c.width, c.height);
animate();
});
})();
HTML
<canvas id="stars"></canvas>
CSS
canvas {
background: black;
}
JSFiddle
What it does right now is animate each star with a delta X that considers the opacity and size of the star, so the smallest ones appear to move slower.
Use p = t; to have all the stars moving at the same speed.
QUESTION
I'm looking for a clearly defined model where the velocities give the illusion of the stars rotating around the expectator, defined in terms of the center of the rotation cX, cY, and the angle of vision v which is what fraction of 2π can be seen (if the center of the circle is not the center of the screen, the radius should be at least the largest portion). I'm struggling to find a way that applies this cosine to the speed of star movements, even for a centered circle with a rotation of π.
These diagrams might further explain what I'm after:
Centered circle:
Non-centered:
Different angle of vision:
I'm really lost as to how to move forwards. I already stretched myself a bit to get here. Can you please help me with some first steps?
Thanks
UPDATE
I have made some progress with this code:
// linear
d = (r*a)*z, // depth
v = (2*Math.PI)/w,
p = Math.floor( d * Math.cos( t * v ) ); // pixels per t
x = x + p; // movement
x = x - w * Math.floor(x / w); // go around when x < 0
JSFiddle
Where p is the x coordinate of a particle in uniform circular motion and v is the angular velocity, but this generates a pendulum effect. I am not sure how to change these equations to create the illusion that the observer is turning instead.
UPDATE 2:
Almost there. One user at the ##Math freenode channel was kind enough to suggest the following calculation:
// linear
d = (r*a), // depth
p = t*d; // pixels per t
x = x - p; // movement
x = x - w * Math.floor(x / w); // go around when x < 0
x = (x / w) - 0.5;
y = (y / h) - 0.5;
y /= Math.cos(x);
x = (x + 0.5) * w;
y = (y + 0.5) * h;
JSFiddle
This achieves the effect visually, but does not follow a clearly defined model in terms of the variables (it just "hacks" the effect) so I cannot see a straightforward way to do different implementations (change the center, angle of vision). The real model might be very similar to this one.
UPDATE 3
Following from Iftah's response, I was able to use Sylvester to apply a rotation matrix to the stars, which need to be saved in an array first. Also each star's z coordinate is now determined and the radius r and opacity a are derived from it instead. The code is substantially different and lenghthier so I am not posting it, but it might be a step in the right direction. I cannot get this to rotate continuously yet. Using matrix operations on each frame seems costly in terms of performance.
JSFiddle
Here's some pseudocode that does what you're talking about.
Make a bunch of stars not too far but not too close (via rejection sampling)
Set up a projection matrix (defines the camera frustum)
Each frame
Compute our camera rotation angle
Make a "view" matrix (repositions the stars to be relative to our view)
Compose the view and projection matrix into the view-projection matrix
For each star
Apply the view-projection matrix to give screen star coordinates
If the star is behind the camera skip it
Do some math to give the star a nice seeming 'size'
Scale the star coordinate to the canvas
Draw the star with its canvas coordinate and size
I've made an implementation of the above. It uses the gl-matrix Javascript library to handle some of the matrix math. It's good stuff. (Fiddle for this is here, or see below.)
var c = document.getElementById('c');
var n = c.getContext('2d');
// View matrix, defines where you're looking
var viewMtx = mat4.create();
// Projection matrix, defines how the view maps onto the screen
var projMtx = mat4.create();
// Adapted from http://stackoverflow.com/questions/18404890/how-to-build-perspective-projection-matrix-no-api
function ComputeProjMtx(field_of_view, aspect_ratio, near_dist, far_dist, left_handed) {
// We'll assume input parameters are sane.
field_of_view = field_of_view * Math.PI / 180.0; // Convert degrees to radians
var frustum_depth = far_dist - near_dist;
var one_over_depth = 1 / frustum_depth;
var e11 = 1.0 / Math.tan(0.5 * field_of_view);
var e00 = (left_handed ? 1 : -1) * e11 / aspect_ratio;
var e22 = far_dist * one_over_depth;
var e32 = (-far_dist * near_dist) * one_over_depth;
return [
e00, 0, 0, 0,
0, e11, 0, 0,
0, 0, e22, e32,
0, 0, 1, 0
];
}
// Make a view matrix with a simple rotation about the Y axis (up-down axis)
function ComputeViewMtx(angle) {
angle = angle * Math.PI / 180.0; // Convert degrees to radians
return [
Math.cos(angle), 0, Math.sin(angle), 0,
0, 1, 0, 0,
-Math.sin(angle), 0, Math.cos(angle), 0,
0, 0, 0, 1
];
}
projMtx = ComputeProjMtx(70, c.width / c.height, 1, 200, true);
var angle = 0;
var viewProjMtx = mat4.create();
var minDist = 100;
var maxDist = 1000;
function Star() {
var d = 0;
do {
// Create random points in a cube.. but not too close.
this.x = Math.random() * maxDist - (maxDist / 2);
this.y = Math.random() * maxDist - (maxDist / 2);
this.z = Math.random() * maxDist - (maxDist / 2);
var d = this.x * this.x +
this.y * this.y +
this.z * this.z;
} while (
d > maxDist * maxDist / 4 || d < minDist * minDist
);
this.dist = Math.sqrt(d);
}
Star.prototype.AsVector = function() {
return [this.x, this.y, this.z, 1];
}
var stars = [];
for (var i = 0; i < 5000; i++) stars.push(new Star());
var lastLoop = Date.now();
function loop() {
var now = Date.now();
var dt = (now - lastLoop) / 1000.0;
lastLoop = now;
angle += 30.0 * dt;
viewMtx = ComputeViewMtx(angle);
//console.log('---');
//console.log(projMtx);
//console.log(viewMtx);
mat4.multiply(viewProjMtx, projMtx, viewMtx);
//console.log(viewProjMtx);
n.beginPath();
n.rect(0, 0, c.width, c.height);
n.closePath();
n.fillStyle = '#000';
n.fill();
n.fillStyle = '#fff';
var v = vec4.create();
for (var i = 0; i < stars.length; i++) {
var star = stars[i];
vec4.transformMat4(v, star.AsVector(), viewProjMtx);
v[0] /= v[3];
v[1] /= v[3];
v[2] /= v[3];
//v[3] /= v[3];
if (v[3] < 0) continue;
var x = (v[0] * 0.5 + 0.5) * c.width;
var y = (v[1] * 0.5 + 0.5) * c.height;
// Compute a visual size...
// This assumes all stars are the same size.
// It also doesn't scale with canvas size well -- we'd have to take more into account.
var s = 300 / star.dist;
n.beginPath();
n.arc(x, y, s, 0, Math.PI * 2);
//n.rect(x, y, s, s);
n.closePath();
n.fill();
}
window.requestAnimationFrame(loop);
}
loop();
<script src="https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.3.1/gl-matrix-min.js"></script>
<canvas id="c" width="500" height="500"></canvas>
Some links:
More on projection matrices
gl-matrix
Using view/projection matrices
Update
Here's another version that has keyboard controls. Kinda fun. You can see the difference between rotating and parallax from strafing. Works best full page. (Fiddle for this is here or see below.)
var c = document.getElementById('c');
var n = c.getContext('2d');
// View matrix, defines where you're looking
var viewMtx = mat4.create();
// Projection matrix, defines how the view maps onto the screen
var projMtx = mat4.create();
// Adapted from http://stackoverflow.com/questions/18404890/how-to-build-perspective-projection-matrix-no-api
function ComputeProjMtx(field_of_view, aspect_ratio, near_dist, far_dist, left_handed) {
// We'll assume input parameters are sane.
field_of_view = field_of_view * Math.PI / 180.0; // Convert degrees to radians
var frustum_depth = far_dist - near_dist;
var one_over_depth = 1 / frustum_depth;
var e11 = 1.0 / Math.tan(0.5 * field_of_view);
var e00 = (left_handed ? 1 : -1) * e11 / aspect_ratio;
var e22 = far_dist * one_over_depth;
var e32 = (-far_dist * near_dist) * one_over_depth;
return [
e00, 0, 0, 0,
0, e11, 0, 0,
0, 0, e22, e32,
0, 0, 1, 0
];
}
// Make a view matrix with a simple rotation about the Y axis (up-down axis)
function ComputeViewMtx(angle) {
angle = angle * Math.PI / 180.0; // Convert degrees to radians
return [
Math.cos(angle), 0, Math.sin(angle), 0,
0, 1, 0, 0,
-Math.sin(angle), 0, Math.cos(angle), 0,
0, 0, -250, 1
];
}
projMtx = ComputeProjMtx(70, c.width / c.height, 1, 200, true);
var angle = 0;
var viewProjMtx = mat4.create();
var minDist = 100;
var maxDist = 1000;
function Star() {
var d = 0;
do {
// Create random points in a cube.. but not too close.
this.x = Math.random() * maxDist - (maxDist / 2);
this.y = Math.random() * maxDist - (maxDist / 2);
this.z = Math.random() * maxDist - (maxDist / 2);
var d = this.x * this.x +
this.y * this.y +
this.z * this.z;
} while (
d > maxDist * maxDist / 4 || d < minDist * minDist
);
this.dist = 100;
}
Star.prototype.AsVector = function() {
return [this.x, this.y, this.z, 1];
}
var stars = [];
for (var i = 0; i < 5000; i++) stars.push(new Star());
var lastLoop = Date.now();
var dir = {
up: 0,
down: 1,
left: 2,
right: 3
};
var dirStates = [false, false, false, false];
var shiftKey = false;
var moveSpeed = 100.0;
var turnSpeed = 1.0;
function loop() {
var now = Date.now();
var dt = (now - lastLoop) / 1000.0;
lastLoop = now;
angle += 30.0 * dt;
//viewMtx = ComputeViewMtx(angle);
var tf = mat4.create();
if (dirStates[dir.up]) mat4.translate(tf, tf, [0, 0, moveSpeed * dt]);
if (dirStates[dir.down]) mat4.translate(tf, tf, [0, 0, -moveSpeed * dt]);
if (dirStates[dir.left])
if (shiftKey) mat4.rotate(tf, tf, -turnSpeed * dt, [0, 1, 0]);
else mat4.translate(tf, tf, [moveSpeed * dt, 0, 0]);
if (dirStates[dir.right])
if (shiftKey) mat4.rotate(tf, tf, turnSpeed * dt, [0, 1, 0]);
else mat4.translate(tf, tf, [-moveSpeed * dt, 0, 0]);
mat4.multiply(viewMtx, tf, viewMtx);
//console.log('---');
//console.log(projMtx);
//console.log(viewMtx);
mat4.multiply(viewProjMtx, projMtx, viewMtx);
//console.log(viewProjMtx);
n.beginPath();
n.rect(0, 0, c.width, c.height);
n.closePath();
n.fillStyle = '#000';
n.fill();
n.fillStyle = '#fff';
var v = vec4.create();
for (var i = 0; i < stars.length; i++) {
var star = stars[i];
vec4.transformMat4(v, star.AsVector(), viewProjMtx);
if (v[3] < 0) continue;
var d = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
v[0] /= v[3];
v[1] /= v[3];
v[2] /= v[3];
//v[3] /= v[3];
var x = (v[0] * 0.5 + 0.5) * c.width;
var y = (v[1] * 0.5 + 0.5) * c.height;
// Compute a visual size...
// This assumes all stars are the same size.
// It also doesn't scale with canvas size well -- we'd have to take more into account.
var s = 300 / d;
n.beginPath();
n.arc(x, y, s, 0, Math.PI * 2);
//n.rect(x, y, s, s);
n.closePath();
n.fill();
}
window.requestAnimationFrame(loop);
}
loop();
function keyToDir(evt) {
var d = -1;
if (evt.keyCode === 38) d = dir.up
else if (evt.keyCode === 37) d = dir.left;
else if (evt.keyCode === 39) d = dir.right;
else if (evt.keyCode === 40) d = dir.down;
return d;
}
window.onkeydown = function(evt) {
var d = keyToDir(evt);
if (d >= 0) dirStates[d] = true;
if (evt.keyCode === 16) shiftKey = true;
}
window.onkeyup = function(evt) {
var d = keyToDir(evt);
if (d >= 0) dirStates[d] = false;
if (evt.keyCode === 16) shiftKey = false;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.3.1/gl-matrix-min.js"></script>
<div>Click in this pane. Use up/down/left/right, hold shift + left/right to rotate.</div>
<canvas id="c" width="500" height="500"></canvas>
Update 2
Alain Jacomet Forte asked:
What is your recommended method of creating general purpose 3d and if you would recommend working at the matrices level or not, specifically perhaps to this particular scenario.
Regarding matrices: If you're writing an engine from scratch on any platform, then you're unavoidably going to end up working with matrices since they help generalize the basic 3D mathematics. Even if you use OpenGL/WebGL or Direct3D you're still going to end up making a view and projection matrix and additional matrices for more sophisticated purposes. (Handling normal maps, aligning world objects, skinning, etc...)
Regarding a method of creating general purpose 3d... Don't. It will run slow, and it won't be performant without a lot of work. Rely on a hardware-accelerated library to do the heavy lifting. Creating limited 3D engines for specific projects is fun and instructive (e.g. I want a cool animation on my webpage), but when it comes to putting the pixels on the screen for anything serious, you want hardware to handle that as much as you can for performance purposes.
Sadly, the web has no great standard for that yet, but it is coming in WebGL -- learn WebGL, use WebGL. It runs great and works well when it's supported. (You can, however, get away with an awful lot just using CSS 3D transforms and Javascript.)
If you're doing desktop programming, I highly recommend OpenGL via SDL (I'm not sold on SFML yet) -- it's cross-platform and well supported.
If you're programming mobile phones, OpenGL ES is pretty much your only choice (other than a dog-slow software renderer).
If you want to get stuff done rather than writing your own engine from scratch, the defacto for the web is Three.js (which I find effective but mediocre). If you want a full game engine, there's some free options these days, the main commercial ones being Unity and Unreal. Irrlicht has been around a long time -- never had a chance to use it, though, but I hear it's good.
But if you want to make all the 3D stuff from scratch... I always found how the software renderer in Quake was made a pretty good case study. Some of that can be found here.
You are resetting the stars 2d position each frame, then moving the stars (depending on how much time and speed of each star) - this is a bad way to achieve your goal. As you discovered, it gets very complex when you try to extend this solution to more scenarios.
A better way would be to set the stars 3d location only once (at initialization) then move a "camera" each frame (depending on time). When you want to render the 2d image you then calculate the stars location on screen. The location on screen depends on the stars 3d location and the current camera location.
This will allow you to move the camera (in any direction), rotate the camera (to any angle) and render the correct stars position AND keep your sanity.

how to apply L-system logic to segments

Edit
Here's a new version which correctly applies the length and model but doesn't position the model correctly. I figured it might help.
http://codepen.io/pixelass/pen/78f9e97579f99dc4ae0473e33cae27d5?editors=001
I have 2 canvas instances
model
result
On the model view the user can drag the handles to modify the model
The result view should then apply the model to every segment (relatively)
This is just a basic l-system logic for fractal curves though I am having problems applying the model to the segments.
Se the picture below: The red lines should replicate the model, but I can't figure out how to correctly apply the logic
I have a demo version here: http://codepen.io/pixelass/pen/c4d7650af7ce4901425b326ad7a4b259
ES6
// simplify Math
'use strict';
Object.getOwnPropertyNames(Math).map(function(prop) {
window[prop] = Math[prop];
});
// add missing math functions
var rad = (degree)=> {
return degree * PI / 180;
};
var deg = (radians)=> {
return radians * 180 / PI;
};
// get our drawing areas
var model = document.getElementById('model');
var modelContext = model.getContext('2d');
var result = document.getElementById('result');
var resultContext = result.getContext('2d');
var setSize = function setSize() {
model.height = 200;
model.width = 200;
result.height = 400;
result.width = 400;
};
// size of the grabbing dots
var dotSize = 5;
// flag to determine if we are grabbing a point
var grab = -1;
// set size to init instances
setSize();
//
var iterations = 1;
// define points
// this only defines the initial model
var returnPoints = function returnPoints(width) {
return [{
x: 0,
y: width
}, {
x: width / 3,
y: width
}, {
x: width / 2,
y: width / 3*2
}, {
x: width / 3 * 2,
y: width
}, {
x: width,
y: width
}];
};
// set initial state for model
var points = returnPoints(model.width);
// handle interaction
// grab points only if hovering
var grabPoint = function grabPoint(e) {
var X = e.layerX;
var Y = e.layerY;
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
model.classList.add('grabbing');
grab = i;
}
}
};
// release point
var releasePoint = function releasePoint(e) {
if (grab > -1) {
model.classList.add('grab');
model.classList.remove('grabbing');
}
grab = -1;
};
// set initial state for result
// handle mouse movement on the model canvas
var handleMove = function handleMove(e) {
// determine current mouse position
var X = e.layerX;
var Y = e.layerY;
// clear classes
model.classList.remove('grabbing');
model.classList.remove('grab');
// check if hovering a dot
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
// indicate grabbable
model.classList.add('grab');
}
}
// if grabbing
if (grab > -1) {
// indicate grabbing
model.classList.add('grabbing');
// modify dot on the model canvas
points[grab] = {
x: X,
y: Y
};
// modify dots on the result canvas
drawSegment({
x: points[grab - 1].x,
y: points[grab - 1].y
}, {
x: X,
y: Y
});
}
};
let m2 = points[1].x / points[4].x
let m3 = points[2].x / points[4].x
let m4 = points[3].x / points[4].x
let n2 = points[1].y / points[4].y
let n3 = points[2].y / points[4].y
let n4 = points[3].y / points[4].y
var drawSegment = function drawSegment(start, end) {
var dx = end.x - start.x
var dy = end.y - start.y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = end.x
let y1 = end.y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
resultContext.srtokeStyle = 'red'
resultContext.beginPath()
resultContext.moveTo(x1, y1)
resultContext.lineTo(x2, y2)
resultContext.stroke()
m2 = points[1].x / points[4].x
m3 = points[2].x / points[4].x
m4 = points[3].x / points[4].x
n2 = points[1].y / points[4].y
n3 = points[2].y / points[4].y
n4 = points[3].y / points[4].y
};
var drawDots = function drawDots(points) {
// draw dots
for (var i = 1; i < points.length - 1; i++) {
modelContext.lineWidth = 4; //
modelContext.beginPath();
modelContext.strokeStyle = 'hsla(' + 360 / 5 * i + ',100%,40%,1)';
modelContext.fillStyle = 'hsla(0,100%,100%,1)';
modelContext.arc(points[i].x, points[i].y, dotSize, 0, 2 * PI);
modelContext.stroke();
modelContext.fill();
}
};
var drawModel = function drawModel(ctx, points, n) {
var dx = points[1].x - points[0].x
var dy = points[1].y - points[0].y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = points[1].x
let y1 = points[1].y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
ctx.strokeStyle = 'hsla(0,0%,80%,1)';
ctx.lineWidth = 1;
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
ctx.strokeStyle = 'hsla(100,100%,80%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke()
if (n > 0 ) {
drawModel(resultContext, [{
x: points[0].x,
y: points[0].y
}, {
x: points[1].x * m2,
y: points[1].y * n2
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m2,
y: points[1].y * n2
}, {
x: points[1].x * m3,
y: points[1].y * n3
}], n - 1);
/*
drawModel(resultContext, [{
x: points[1].x * m3,
y: points[1].y * m3
}, {
x: points[1].x * m4,
y: points[1].y * n4
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m4,
y: points[1].y * m4
}, {
x: points[1].x,
y: points[1].y
}], n - 1);*/
} else {
ctx.strokeStyle = 'hsla(0,100%,50%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
}
};
var draw = function draw() {
// clear both screens
modelContext.fillStyle = 'hsla(0,0%,100%,.5)';
modelContext.fillRect(0, 0, model.width, model.height);
resultContext.fillStyle = 'hsla(0,0%,100%,1)';
resultContext.fillRect(0, 0, result.width, result.height);
// draw model
drawModel(modelContext, [{
x: 0,
y: 200
}, {
x: 200,
y: 200
}]);
drawModel(resultContext, [{
x: 0,
y: 400
}, {
x: 400,
y: 400
}],iterations);
// draw the dots to indicate grabbing points
drawDots(points);
// redraw
requestAnimationFrame(draw);
};
window.addEventListener('resize', setSize);
model.addEventListener('mousemove', handleMove);
model.addEventListener('mousedown', grabPoint);
window.addEventListener('mouseup', releasePoint);
setSize();
draw();
Write a function to transform a point given the point, an old origin (the start of the model line segment), a new origin (the start of the child line segment), an angle and a scale (you have already calculated these):
var transformPoint = function transformPoint(point, oldOrigin, newOrigin, angle, dist) {
// subtract old origin to rotate and scale relative to it:
var x = point.x - oldOrigin.x;
var y = point.y - oldOrigin.y;
// rotate by angle
var sine = sin(angle)
var cosine = cos(angle)
var rotatedX = (x * cosine) - (y * sine);
var rotatedY = (x * sine) + (y * cosine);
// scale
rotatedX *= dist;
rotatedY *= dist;
// offset by new origin and return:
return {x: rotatedX + newOrigin.x - oldOrigin.x, y: rotatedY + newOrigin.y - oldOrigin.y }
}
You need to translate it by the old origin (so that you can rotate around it), then rotate, then scale, then translate by the new origin. Then return the point.
modelLogic[0] is the old origin because it defines the start of the segment in the model and points[0] is the new origin because that is what it is mapped to by the transformation.
You can call the function from your drawModel function like this:
let p1 = transformPoint(modelLogic[0], modelLogic[0], points[0], angle, dist);
let p2 = transformPoint(modelLogic[1], modelLogic[0], points[0], angle, dist);
let p3 = transformPoint(modelLogic[2], modelLogic[0], points[0], angle, dist);
let p4 = transformPoint(modelLogic[3], modelLogic[0], points[0], angle, dist);
let p5 = transformPoint(modelLogic[4], modelLogic[0], points[0], angle, dist);
and change your drawing code to use the returned points p1, p2 etc instead of x1, y1, x2, y2 etc.
Alternatively, you can create a single matrix to represent all of these translation, rotation and scaling transforms and transform each point by it in turn.

Categories

Resources