I am working with Cesium and I am using the Cesium.WallGeometry and I would like to thicken my walls to make them more visible when viewed from a distance because at certain angles the wall disappears. The only thing I can seem to do is change the maximum and minimum heights to lengthen the wall but no way to widen it. Anyone know either an attribute function that I missed or a way to modify the cesium source to change this? I am working with the full b-29 version of Cesium right now.
Walls in Cesium have no thickness; if you would like to draw a thick wall you should be using either Corridor or Polygon geometry. There are several other types of geometry that may provide what you are looking for as well; those links have more.
Related
I'm working on a canvas-based heatmap using a library called simpleheat (https://github.com/mourner/simpleheat). I've got the heatmap effect working, but does anyone here know how I'd be able to achieve a glow affect like the image below? I've tried implementing this effect with Pixi filters, but haven't had any luck so far.
If you do this manually, or point by point based on xy coordinates for a map that you might have, you could just make a canvas overlay for the map and then draw points on the canvas as overlays. I think you can also set the canvas colors as rgba to make them slightly transparent.
(srry i was gonna make this a comment but i dont have enough reputation for that lol)
hope this helps
I am working on this browser-based experiment where i am given N specific circles (let's say they have a unique picture in them) and need to position them together, leaving as little space between them as possible. It doesn't have to be arranged in a circle, but they should be "clustered" together.
The circle sizes are customizable and a user will be able to change the sizes by dragging a javascript slider, changing some circles' sizes (for example, in 10% of the slider the circle 4 will have radius of 20px, circle 2 10px, circle 5 stays the same, etc...). As you may have already guessed, i will try to "transition" the resizing-repositioning smoothly when the slider is being moved.
The approach i have tried tried so far: instead of manually trying to position them i've tried to use a physics engine-
The idea:
place some kind of gravitational pull in the center of the screen
use a physics engine to take care of the balls collision
during the "drag the time" slider event i would just set different
ball sizes and let the engine take care of the rest
For this task i have used "box2Dweb". i placed a gravitational pull to the center of the screen, however, it took a really long time until the balls were placed in the center and they floated around. Then i put a small static piece of ball in the center so they would hit it and then stop. It looked like this:
The results were a bit better, but the circles still moved for some time before they went static. Even after playing around with variables like the ball friction and different gravitational pulls, the whole thing just floated around and felt very "wobbly", while i wanted the balls move only when i drag the time slider (when they change sizes). Plus, box2d doesn't allow to change the sizes of the objects and i would have to hack my way for a workaround.
So, the box2d approach made me realize that maybe to leave a physics engine to handle this isn't the best solution for the problem. Or maybe i have to include some other force i haven't thought of. I have found this similar question to mine on StackOverflow. However, the very important difference is that it just generates some n unspecific circles "at once" and doesn't allow for additional specific ball size and position manipulation.
I am really stuck now, does anyone have any ideas how to approach this problem?
update: it's been almost a year now and i totally forgot about this thread. what i did in the end is to stick to the physics model and reset forces/stop in almost idle conditions. the result can be seen here http://stateofwealth.net/
the triangles you see are inside those circles. the remaining lines are connected via "delaunay triangulation algorithm"
I recall seeing a d3.js demo that is very similar to what you're describing. It's written by Mike Bostock himself: http://bl.ocks.org/mbostock/1747543
It uses quadtrees for fast collision detection and uses a force based graph, which are both d3.js utilities.
In the tick function, you should be able to add a .attr("r", function(d) { return d.radius; }) which will update the radius each tick for when you change the nodes data. Just for starters you can set it to return random and the circles should jitter around like crazy.
(Not a comment because it wouldn't fit)
I'm impressed that you've brought in Box2D to help with the heavy-lifting, but it's true that unfortunately it is probably not well-suited to your requirements, as Box2D is at its best when you are after simulating rigid objects and their collision dynamics.
I think if you really consider what it is that you need, it isn't quite so much a rigid body dynamics problem at all. You actually want none of the complexity of box2d as all of your geometry consists of spheres (which I assure you are vastly simpler to model than arbitrary convex polygons, which is what IMO Box2D's complexity arises from), and like you mention, Box2D's inability to smoothly change the geometric parameters isn't helping as it will bog down the browser with unnecessary geometry allocations and deallocations and fail to apply any sort of smooth animation.
What you are probably looking for is an algorithm or method to evolve the positions of a set of coordinates (each with a radius that is also potentially changing) so that they stay separated by their radii and also minimize their distance to the center position. If this has to be smooth, you can't just apply the minimal solution every time, as you may get "warping" as the optimal configuration might shift dramatically at particular points along your slider's movement. Suffice it to say there is a lot of tweaking for you to do, but not really anything scarier than what one must contend with inside of Box2D.
How important is it that your circles do not overlap? I think you should just do a simple iterative "solver" that first tries to bring the circles toward their target (center of screen?), and then tries to separate them based on radii.
I believe if you try to come up with a simplified mathematical model for the motion that you want, it will be better than trying to get Box2D to do it. Box2D is magical, but it's only good at what it's good at.
At least for me, seems like the easiest solution is to first set up the circles in a cluster. So first set the largest circle in the center, put the second circle next to the first one. For the third one you can just put it next to the first circle, and then move it along the edge until it hits the second circle.
All the other circles can follow the same method: place it next to an arbitrary circle, and move it along the edge until it is touching, but not intersecting, another circle. Note that this won't make it the most efficient clustering, but it works. After that, when you expand, say, circle 1, you'd move all the adjacent circles outward, and shift them around to re-cluster.
I'm completely new to canvas and animating objects with it. I did a little bit of research (e.g. I found RaphaelJS) however I couldn't find any general answer or tutorial on how to create a "morphing" circle.
The image I posted here is what I would like to do:
I'd like to create one circle that is endlessly animated via a randomizer and is slightly morphing its contours.
I know this might be not a "real" question for this forum, however I just wonder if anyone could provide a few tipps or tricks on how to do something like that.
By "how to do something like that" I'm speaking actually about the technique on how to morph a circle. Do I have to "mathematically" create a circle with dozens of anchor-points along the edge that are influenced by a randomized function?
I would really appreciate some starting help with this.
Thank you in advance.
A circle can be reasonably well approximated by 4 cubic curves (one for each quarter and the control points on the tangents - google for the correct length of the control segments or calculate them yourself - see here. You could then randomly animate the control points within a small radius to get a wobbling effect.
Do I have to "mathematically" create a circle with dozens of anchor-points along the edge that are influenced by a randomized function?
Yes, you do, although it should not be necessary to create "dozens".
You may find the .bezierCurveTo() and .quadraticCurveTo() functions useful to provide smooth interpolated curves between control points.
When you can use a raster image then for every point you can displace it along the x-axis with a sin function. You can run the same function along the y-axis but instead to simply displace the pixel you can double it. This should give you a morphing circle but it also works with other shapes.
I'm making a tile-based browser game using Sprite.js to interact with canvas. https://github.com/batiste/sprite.js/
Here is what I got now(PC version has a larger visible area):
http://www.youtube.com/watch?v=l3c-cmWUVrc
It is not easy to redraw every tile each frame because of performance, so I tried to make a scrolling surface background using scrolling.js that comes with sprite.js. There is an example here http://batiste.dosimple.ch/sprite.js/tests/test_scrolling.html The example works, but it seems like ScrollingSurface.update is buggy or there is something I'm missing.
What I tried to do is to draw 5x5 tiles and after 5 seconds draw another 5x5 tiles near the first ones. But it draws only the first ones. And surface.update() only updates the position of surface. Here is my code https://github.com/Sektoid/sprite.js/blob/master/tests/test_scrolling.html (You need also to set this.divider = 1.0 in scrolling.js if you want to avoid drawing the same tiles 4 times.) There aren't any sprite.js-forums like with the other sprite- and game-engines have, but it is fast and very useful. Take a look at it! And help me please :)
Basically, what I'm trying to do is use a map viewer as an image viewer with the same sort of efficient tile-loading, zoom/pan awesomeness without having to build it myself.
Specifically, I need an image viewer that will allow the image to grow and change while not altering the coordinates of any older (unchanged) tiles. This means that the center point (0,0), where the image started growing from, must always remain (0,0). So I'm looking for a library that will allow me to use a very basic Cartesian coordinate system (no map projection!), which will ask for tiles infinitely in all directions with no repetition (as opposed to how map libraries just ignore y-axis above and below the map, but the x axis repeats).
There's another catch. I need zoom level 0 to be zoomed in all the way. Since the image is constantly growing, there's no way to tell what the max zoom level will be, and the coordinates need to be based on the base image layer tiles so that every tile in zoom level z contains 2^z base layer tiles.
I am wondering if this is possible with OpenLayers and how to do it. If it's not, any suggestions of other (open-source javascript) libraries that can do this would be very appreciated! I've tried playing around with Polymaps, but the documentation is lacking too much for me to be able to tell if it will work. So far no luck.
Please let me know if none of this made sense, and I'll try to include some images or better explanations. Thanks!
I ended up using Polymaps after all, since I like it more than OpenLayers, because it's faster and has much smoother scrolling and panning. I wasn't able to do exactly what I wanted, but what I did was close enough.
I ended up writing my own layer (based on the po.image() layer), which disabled infinite horizontal looping of the map. I then wrote my own version of po.url() that modified the requests going to the server for tiles so that zooming was reversed (I just arbitrarily picked a 'max' zoom of 20, then when making a request subtract the zoom level from 20) and the x and y coordinates were converted to cartesian coordinates from the standard row, column coordinates Polymaps uses, based on the zoom level and the map centered at (0,0).
If anyone is interested in the code I can post it here. Let me know!
EDIT: I've posted the code on github at https://github.com/camupod/polymaps
The relevant files are src/Backwards* and examples/backwards (though it actually doesn't work, you might be able to clean some information about how it should work).