setTimeout in while loop crashes my browser - javascript

I was trying to move an image by adding to its .style.left and all that worked, until I tried to add a while cycle (to add until its left value is 90) and add setTimeout so that the movement is visible. Problem is that the HTML doesn't even load anymore and after a while it asks me to either Stop script or Continue - both of which help nothing and I am forced to kill the browser.
Here's the relevant code:
function sprint(){
button = parseInt(document.getElementById("azisButton").style.left.split("%")[0]);
while(button<10){
setTimeout(function(){
button++;
//console.log(button);
}, 1000);
//console.log("Tady");
}
}
Why does it happen? Do I get into infinite loop, or something?
EDIT: Is there any way to do it some other, smart way?

You built an endless loop! button++ is incremented in your callback, but the callback is only executed when the loop ends, as JavaScript is single threaded.

The while construct is a synchronous operation. Therefore you're just adding to the heap till the browser runs out of memory. What you need is a self-invoking function.
Best way to imagine this is to think of setTimeout as an IOU or debt system. Imaging the task you made with the while loop as a basket. You're job is to write an IOU and place it in the basket as a "to do later" or "do this task when I'm done with the task of the while loop"
So as you iterate over the loop each setTimeout becomes a "to do later" IOU and the while loop goes to the next iteration. Since the incrementing task is in one of those "to do later" functions they never get executed because they are waiting for the while loop to finish first. Hence the infinite loop.
To fix this logic you have to break out of the loop all together and make your own loop logic using a self-invoking function:
var button = 0;
function next() {
button++;
if (button < 10) {
setTimeout(next, 1000);
}
}
next();
A good way to keep this strait in your head is to interchange the setTimeout with a console.log in your mind. With a console.log you expect the command to return immediately and move on. The function passed into setTimeout will wait till the parent function it is defined in to finish before calling the function you passed it. In the example above next() is called after the parent next() finishes.

That is an infinite loop, since Javascript is single-threaded, none of your callbacks execute until the while loop finishes, which never happens, because button isn't incremented until the callbacks execute.

function sprint(){
button = parseInt(document.getElementById("azisButton").style.left.split("%")[0]);
if(button > 90){
// move button code here
setTimeout(sprint, 1000);
}
}

Related

Does Javascript setInterval function stops if another function is executing same time [duplicate]

setTimeout(function(){
console.log("m");
}, 0);
console.log("s");
Why does this code print "s" before "m", even if the setTimeout callback is supposed to wait for 0 ms?
A browser or node.js always run a single threaded event loop to run your code. On the first run it will always run your synchronous code but may also que up asynchronous events that will call back later. Thats why we call the function here callback function it will be called later.
setTimeout is a microtask.
That means the function that you see isnt gona executed immedantly, it is gonna first queued up and will be executed within the next event loop.
Also a sidefact: 0 ms just means it will minimum wait 0 ms not exact 0
When you create a promise, or call an async function, or set a timeout for 0 milliseconds, the function is immediately queued into the Javascript event loop. Essentially, the function is added to a queue of functions to call, and once the javascript interpreter has nothing to do it'll start calling those functions. So, when you set a timeout for 0 milliseconds, it queues the console.log("m"), then calls the console.log("s"), then it has nothing to do so it finishes the queued console.log("m"), which is why it's out of order.
it just because JS is single-threaded and event loop works that way.
setTimeout has written in a way that it will send you function or whatever you want to do in a callback queue.
and then move forward to the next line, once next line executed it will not run your setTimeout part, or in other words, it will not process the setTimeout part until the stack is not empty.
so this is your code, and it will execute like this.
setTimeout(function () {
console.log("m");
} , 0)
console.log('s');
the first line will execute and it will send the inner part of setTimeout to callback queue and move to the 2nd line.
while 2nd line is executing the setTimeout part will wait till the stack is not emplty and as soon as 2nd line finishes execution,
the setTimeout part will execute,
maybe it's confusing by words, let's see this in action. I bet you can not get a better example than this to understand it, it's explained in the best way by Philip robert.
because JS code goes in order one by one. When you specifying setTimeout to 0 is still waiting, in C++ lang this would be something like this 0.000000245ms, and JS runs often on C++/C browser.
try this simple example
for (let x = 0; x < 500; x++) {
setTimeout(() => console.log(x), 0);
}
console.log('hello');

setTimeout() Irregular Execution Behaviour [duplicate]

The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work

Javascript Asynchronous with setTimeout(..., 0)

I wanted to have a better understanding of how the event loop and asynchronous code works in Javascript. There is a ton of resources online but I could not find an answer to my question
Everyday I mostly use callbacks, promises, async/awaits, but at the end I am simply relying on already asynchronous methods.
Therefore I wanted to know how it works, creating an async function from scratch, and deal with blocking code (or should I say slow code, that is not an HttpRequest or anything that is already provided to us).
For example taking while loop with a very high condition to stop it, should take a second to finish. And this is what I decided to implement for my tests.
After my research, I could read that one way of making my code asynchronous, would be to use setTimeout with a 0ms delay (placing a message in the event queue, that will be executed after the next tick)
function longOperation(cb) {
setTimeout(function() {
var i = 0;
while (i != 1000000000) { i++; }
cb();
}, 0);
}
longOperation(() => {
console.log('callback finished');
})
console.log('start');
My question is:
When my code is finally going to be executed, why isn't it blocking anymore ? What is the difference between executing it normally, and placing a message that the event loop will pick to push it to the call stack ?
The following video shows how the event loop handles a setTimeout with 0 delay.
JavaScript Event loop with setTimeout 0
However, the code executed is a simple console log. In my example, this is a "long" operation...
The outer code executes to completion.
The setTimeout 0 timer expires immediately, so its callback runs right away and executes to completion (the long-running while loop and its callback).
During both of these code execution phases, no other JavaScript user code will run.

Promise is not resolving in Node with infinite while loop? [duplicate]

The following example is given in a Node.js book:
var open = false;
setTimeout(function() {
open = true
}, 1000)
while (!open) {
console.log('wait');
}
console.log('open sesame');
Explaining why the while loop blocks execution, the author says:
Node will never execute the timeout callback because the event loop is
stuck on this while loop started on line 7, never giving it a chance
to process the timeout event!
However, the author doesn't explain why this happens in the context of the event loop or what is really going on under the hood.
Can someone elaborate on this? Why does node get stuck? And how would one change the above code, whilst retaining the while control structure so that the event loop is not blocked and the code will behave as one might reasonably expect; wait
will be logged for only 1 second before the setTimeout fires and the process then exits after logging 'open sesame'.
Generic explanations such as the answers to this question about IO and event loops and callbacks do not really help me rationalise this. I'm hoping an answer which directly references the above code will help.
It's fairly simple really. Internally, node.js consists of this type of loop:
Get something from the event queue
Run whatever task is indicated and run it until it returns
When the above task is done, get the next item from the event queue
Run whatever task is indicated and run it until it returns
Rinse, lather, repeat - over and over
If at some point, there is nothing in the event queue, then go to sleep until something is placed in the event queue or until it's time for a timer to fire.
So, if a piece of Javascript is sitting in a while() loop, then that task is not finishing and per the above sequence, nothing new will be picked out of the event queue until that prior task is completely done. So, a very long or forever running while() loop just gums up the works. Because Javascript only runs one task at a time (single threaded for JS execution), if that one task is spinning in a while loop, then nothing else can ever execute.
Here's a simple example that might help explain it:
var done = false;
// set a timer for 1 second from now to set done to true
setTimeout(function() {
done = true;
}, 1000);
// spin wait for the done value to change
while (!done) { /* do nothing */}
console.log("finally, the done value changed!");
Some might logically think that the while loop will spin until the timer fires and then the timer will change the value of done to true and then the while loop will finish and the console.log() at the end will execute. That is NOT what will happen. This will actually be an infinite loop and the console.log() statement will never be executed.
The issue is that once you go into the spin wait in the while() loop, NO other Javascript can execute. So, the timer that wants to change the value of the done variable cannot execute. Thus, the while loop condition can never change and thus it is an infinite loop.
Here's what happens internally inside the JS engine:
done variable initialized to false
setTimeout() schedules a timer event for 1 second from now
The while loop starts spinning
1 second into the while loop spinning, the timer is ready to fire, but it won't be able to actually do anything until the interpreter gets back to the event loop
The while loop keeps spinning because the done variable never changes. Because it continues to spin, the JS engine never finishes this thread of execution and never gets to pull the next item from the event queue or run the pending timer.
node.js is an event driven environment. To solve this problem in a real world application, the done flag would get changed on some future event. So, rather than a spinning while loop, you would register an event handler for some relevant event in the future and do your work there. In the absolute worst case, you could set a recurring timer and "poll" to check the flag ever so often, but in nearly every single case, you can register an event handler for the actual event that will cause the done flag to change and do your work in that. Properly designed code that knows other code wants to know when something has changed may even offer its own event listener and its own notification events that one can register an interest in or even just a simple callback.
This is a great question but I found a fix!
var sleep = require('system-sleep')
var done = false
setTimeout(function() {
done = true
}, 1000)
while (!done) {
sleep(100)
console.log('sleeping')
}
console.log('finally, the done value changed!')
I think it works because system-sleep is not a spin wait.
There is another solution. You can get access to event loop almost every cycle.
let done = false;
setTimeout(() => {
done = true
}, 5);
const eventLoopQueue = () => {
return new Promise(resolve =>
setImmediate(() => {
console.log('event loop');
resolve();
})
);
}
const run = async () => {
while (!done) {
console.log('loop');
await eventLoopQueue();
}
}
run().then(() => console.log('Done'));
Node is a single serial task. There is no parallelism, and its concurrency is IO bound. Think of it like this: Everything is running on a single thread, when you make an IO call that is blocking/synchronous your process halts until the data is returned; however say we have a single thread that instead of waiting on IO(reading disk, grabbing a url, etc) your task continues on to the next task, and after that task is complete it checks that IO. This is basically what node does, its an "event-loop" its polling IO for completion(or progress) on a loop. So when a task does not complete(your loop) the event loop does not progress. To put it simply.
because timer needs to comeback and is waiting loop to finish to add to the queue, so although the timeout is in a separate thread, and may indeed finsihed the timer, but the "task" to set done = true is waiting on that infinite loop to finish
var open = false;
const EventEmitter = require("events");
const eventEmitter = new EventEmitter();
setTimeout(function () {
open = true;
eventEmitter.emit("open_var_changed");
}, 1000);
let wait_interval = setInterval(() => {
console.log("waiting");
}, 100);
eventEmitter.on("open_var_changed", () => {
clearInterval(wait_interval);
console.log("open var changed to ", open);
});
this exemple works and you can do setInterval and check if the open value changed inside it and it will work

How does Javascript manages recursive calls?

I was goofing around with JavaScript, and a notice a strange behavior (strange for me at least. . .)
So I did a SSCCE here it goes:
I have a div named "myDiv"
function changeText(text){
document.getElementById("myDiv").innerHTML=text;
}
function recursiveCall(counter){
if(counter){
setTimeout(function(){
recursiveCall(--counter);
changeText(counter);
},750);
}
}
recursiveCall(10);
Live example: http://jsfiddle.net/T645X/
So I'm changing the text on the div, and what happens is that the text goes from 9 to 0, while I thought that it was suppose to go from 0 to 9, since the recursive changeText(counter); call is before calling the method that actually changes the text.
The function contains a timeout which is asynchronous.
setTimeout(function(){
recursiveCall(--counter);// calls the next function, which will call the next
// and print in a timeout
changeText(counter); // print
},750);
The text is changed before the recursive call hits the timeout.
If you'd like to, you can move the print call from outside the timeout, which would result in the expected behavior as such:
function recursiveCall(counter){
if(counter){
recursiveCall(--counter);
setTimeout(function(){
changeText(counter);
},750);
}
}
(Although, note that here the printing is not timed apart, and we're relying somewhat on undefined behavior assuming it'd print first just because we put the timer first)
If you would like it to still print in delays, you can tell the function it's done. Recursion will still be done initially, but each level will tell the level above it that it is done:
function recursiveCall(counter,done){
if(counter){
// note how recursion is done before the timeouts
recursiveCall(counter-1,function(){ //note the function
setTimeout(function(){ //When I'm done, change the text and let the
changeText(counter-1); //next one know it's its turn.
done(); // notify the next in line.
},750);
});
}else{
done(); //If I'm the end condition, start working.
}
}
Here is a fiddle implementing this.
Strictly speaking there is no recursion here.
The call to setTimeout just adds a callback to a list of scheduled timer events.
Much of the time, your browser is just sat there waiting for events, it processes those (i.e. runs your event handlers) and then goes back to waiting for events.
So in this case what you're doing is:
recursiveCall(10)
timer event and callback added to the queue
function exits
... waits 750 ms ...
timer event fires, callback pulled from the queue and invoked
-> recursiveCall(9) invoked
-> timer event and callback added to the queue
-> changeText(9) invoked
callback function exits
... waits 750 ms ...
timer event fires, callback pulled from the queue and invoked
-> recursiveCall(8) invoked
-> timer event and callback added to the queue
-> changeText(8) invoked
callback function exits
and so on...
I call this pseudo-recursion, because although it looks somewhat like classical recursion, each invocation starts at the same "stack frame", i.e. if you asked for a stack trace there would typically only be one (or in your case sometimes two) instance of recursiveCall present at a time.
One thing to understand is that it's not recursion in the first place; if your function didn't have a proper exit clause, this could go on forever without running into a blown stack.
The reason is that any function you pass to setTimeout() is run outside of the current execution context; in other words, the code "breaks out" of your function.
If you want a recursive call with 750ms in between them, you could do something like this:
function recursiveCall(counter, fn)
{
if (counter) {
recursiveCall(--counter, function() {
changeText(counter);
setTimeout(fn, 750);
});
} else if (fn) {
fn(); // start chain backwards
}
}
It creates a chain of callbacks when it recurses and the exit clause sets the whole chain motion, backwards :)

Categories

Resources