Underscore has an Object function _.property(key) which returns a function that itself returns the 'key' property of any passed in object. For example:
var moe = {name: 'moe'};
var propFunction = _.property('name');
var value = propFunction(moe);
=> 'moe'
I'm wondering if there's a good way with Underscore to get the same behavior with an object's function in addition to just an object's property. I'm pretty sure there's not a single function for it, but I'm wondering if there's some reasonable combination of functions that together will do what I want. For example:
var moe = {getName: function() { return 'moe'; }};
var funcFunction = _.underscoreGoodnessHere('getName');
var value = funcFunction(moe);
=> 'moe'
This would be to remove some of the boilerplate in some pseudo-real code I have like this:
this.collection.filter(function(model) { return model.isHidden(); });
// could change to this:
this.collection.filter(_.underscoreGoodness('isHidden'));
For what it's worth, if there is not a great way to do what I've asked but you still have a better way to write my pseudo-real code above, I'd still love to hear that!
You're looking for the callback function that Underscore uses in _.invoke() - however that is not public. You can build it easily yourself:
_.method = function(name) {
var args = _.tail(arguments),
isFunc = _.isFunction(name);
return function(value) {
return (isFunc ? name : value[name]).apply(value, args);
};
};
You can create your own function which is based on _.property:
function callProperty(prop) {
var getProperty = _.property(prop);
return function(obj) {
return getProperty(obj)();
};
}
Shortest I can think of is using: _.result()
function functionProp(prop){
return function(obj){
return _.result(obj, prop);
};
}
Which will actually also work for non-function properties. So:
var moe = {getName: function() { return this.name; }, name: 'moe'};
'moe' == functionProp('getName')(moe);
'moe' == functionProp('name')(moe);
Underscore's property function doesn't distinguish between "functional properties" and "regular properties". To it, a function object stored under a property name is the property value itself. Extending the example you provided you see the following:
var moe = {getName: function() { return 'moe'; }};
var funcFunction = _.property('getName');
var getter = funcFunction(moe);
=> function() { return 'moe'; }
var value = getter();
=> 'moe'
funcFunction(moe)();
=> 'moe'
If you want to build your own, you can do something like the following:
function functionalProperty(name) {
var getter = _.property(name);
return function (o) { return getter(o); };
}
Or, if you want to support both types of properties with the same function, you could do this
function anyProperty(name) {
var getter = _.property(name);
return function (o) {
var val = getter(o);
return _.isFunction(val) ? val() : val;
};
}
Just be careful that you only use this for actual properties and not functions that you didn't really want to get invoked.
Related
Got an array with functions. I want to do a function that returns a function from the array with function name given as argument.
var arr = [
function Dog(){},
function Cat(){}
];
var getFunction = function(name){
return // should return the function with matching name
};
var dogFunction = getFunction('Dog'); // returns dog function.
https://jsfiddle.net/zcjd9pyz/
Is this possible?
if you do an associative array, it is possible
var arr = {
'dog' : function Dog(){},
'cat' : function Cat(){}
};
arr['dog']();
Functions have a name property:
var getFunction = function(name){
for (var i=0; i<arr.length; i++) {
if (arr[i].name===name) return arr[i];
}
return // return undefined
};
If you want to have a fast access, you can precompute a map by first iterating:
var map = arr.reduce(function(m,f){ m[f.name]=f; return m}, {});
which allows
var fun = map["Dog"];
Computing the map in code instead of typing it yourself lets you not repeat the name. A DRY code is easier to maintain.
EDIT: I'm not sure functions have a name on IE but I can't test it.
In ES6 you could do it without modifying the array (or in all browsers except Internet Explorer if you replace the arrow function with a normal one and use a polyfill for find:
var getFunction = function(name){
return arr.find( func => name === func.name );
};
Even in ES6 though, I don't see a good reason to do that. I think you should follow Deblaton Jean-Philippe's answer and change the array to an object, mapping the names to the functions.
You can use this sample work around of mine, instead of matching for string you can use it based on function name
https://gist.github.com/freewayz/56bd9db6d4164a42be75
var myArray = [{"name" : "pitaside", "id" : 1}, {"name":"github", "id" : 3}]
filterArrayByType: function (arrayToMatch, fieldType, matcher) {
if(! arrayToMatch instanceof Array){throw ("Not an Array")}
var filterTypeToReturn = arrayToMatch.filter((items) => {
var temp;
if (items[String(fieldType)] === matcher) {
temp = items[String(fieldType)]
}
return temp;
}
);
return filterTypeToReturn;
}
var myMatcher = 'github'
var id3 = filterArrayByType(myArray, 'name', myMatcher)[0].id
//returns 3
You can use Function.prototype.toString(). Unlike name it is supported by most of the modern browsers as well as by Node.js.
var arr = [
function Dog ( ) {},
function Cat ( ) {}
];
var getFunction = function(name){
'use strict';
// could use find but it isn't supported by IE
return arr.filter(function (func) {
return /^function\s+(\w+)/.exec(func.toString())[1] === name;
})[0];
};
console.log(getFunction('Dog'));
console.log(getFunction('Cat'));
console.log(getFunction('Unknown'));
I've been building a small JS framework for use at my job, and I'd like to employ Douglas Crockford's prototypical inheritance patterns. I think I get the general idea of how the prototype object works, but what isn't clear is the way in which I would use this pattern beyond the simplest example.
I'll flesh it out to the point that I understand it.
(function () {
'use strict';
var Vehicles = {};
Vehicles.Vehicle = function () {
this.go = function () {
//go forwards
};
this.stop = function () {
//stop
};
};
Vehicles.Airplane = Object.create(Vehicles.Vehicle());
}());
So now my Vehicles.Airplane object can go() and stop(), but I want more. I want to add takeOff() and land() methods to this object. I could just use ugly dot notation afterwards:
Vehicles.Airplane.takeOff = function () {
//take off stuff
}
But that seems wrong, especially if I were to add many methods or properties. The question asked at here seems to be very similar to mine, but the answer doesn't quite ring true for me. The answer suggests that I should build an object literal before using Object.create, and that I should pass that object literal into the create method. In the example code given, however, it looks like their new object inherits nothing at all now.
What I'm hoping for is some syntax similar to:
Vehicles.Airplane = Object.create(Vehicles.Vehicle({
this.takeOff = function () {
//takeOff stuff
};
this.land = function () {
//land stuff
};
}));
I know this syntax will break terribly with Object.create right now, because of course I'm passing Vehicle.Vehicle a function rather than an object literal. That's beside the point. I'm wondering in what way I should build new properties into an object that inherits from another without having to list them out one at a time with dot notation after the fact.
EDIT:
Bergi, after some anguished thought on the topic, I think I really want to go with what you described as the "Classical Pattern". Here is my first stab at it (now with actual code snippets rather than mocked up hypotheticals - You even get to see my crappy method stubs):
CS.Button = function (o) {
o = o || {};
function init(self) {
self.domNode = dce('a');
self.text = o.text || '';
self.displayType = 'inline-block';
self.disabled = o.disabled || false;
self.domNode.appendChild(ctn(self.text));
if (o.handler) {
self.addListener('click', function () {
o.handler(self);
});
}
}
this.setText = function (newText) {
if (this.domNode.firstChild) {
this.domNode.removeChild(this.domNode.firstChild);
}
this.domNode.appendChild(ctn(newText));
};
init(this);
};
CS.Button.prototype = Object.create(CS.Displayable.prototype, {
constructor: {value: CS.Button, configurable: true}
});
CS.Displayable = function (o) { // o = CS Object
o = o || {};
var f = Object.create(new CS.Element(o));
function init(self) {
if (!self.domAnchor) {
self.domAnchor = self.domNode;
}
if (self.renderTo) {
self.renderTo.appendChild(self.domAnchor);
}
}
//Public Methods
this.addClass = function (newClass) {
if (typeof newClass === 'string') {
this.domNode.className += ' ' + newClass;
}
};
this.addListener = function (event, func, capture) {
if (this.domNode.addEventListener) {
this.domNode.addEventListener(event, func, capture);
} else if (this.domNode.attachEvent) {
this.domNode.attachEvent('on' + event, func);
}
};
this.blur = function () {
this.domNode.blur();
};
this.disable = function () {
this.disabled = true;
};
this.enable = function () {
this.disabled = false;
};
this.focus = function () {
this.domNode.focus();
};
this.getHeight = function () {
return this.domNode.offsetHeight;
};
this.getWidth = function () {
return this.domNode.offsetWidth;
};
this.hide = function () {
this.domNode.style.display = 'none';
};
this.isDisabled = function () {
return this.disabled;
};
this.removeClass = function (classToRemove) {
var classArray = this.domNode.className.split(' ');
classArray.splice(classArray.indexOf(classToRemove), 1);
this.domNode.className = classArray.join(' ');
};
this.removeListener = function () {
//Remove DOM element listener
};
this.show = function () {
this.domNode.style.display = this.displayType;
};
init(this);
};
CS.Displayable.prototype = Object.create(CS.Element.prototype, {
constructor: {value: CS.Displayable, configurable: true}
});
I should be quite clear and say that it's not quite working yet, but mostly I'd like your opinion on whether I'm even on the right track. You mentioned "instance-specific properties and methods" in a comment in your example. Does that mean that my this.setText method and others are wrongly placed, and won't be available to descendant items on the prototype chain?
Also, when used, it seems that the order of declaration now matters (I can't access CS.Displayable.prototype, because (I think) CS.Button is listed first, and CS.Displayable is undefined at the time that I'm trying to reference it). Is that something I'll just have to man up and deal with (put things in order of ancestry in the code rather than my OCD alphabetical order) or is there something I'm overlooking there as well?
Vehicles.Airplane = Object.create(Vehicles.Vehicle());
That line is wrong. You seem to want to use new Vehicles.Vehicle - never call a constructor without new!
Still, I'm not sure which pattern you want to use. Two are coming to my mind:
Classical Pattern
You are using constructor functions just as in standard JS. Inheritance is done by inheriting the prototype objects from each other, and applying the parent constructor on child instances. Your code should then look like this:
Vehicles.Vehicle = function () {
// instance-specific properties and methods,
// initialising
}
Vehicles.Vehicle.prototype.go = function () {
//go forwards
};
Vehicles.Vehicle.prototype.stop = function () {
//stop
};
Vehicles.Airplane = function() {
// Vehicles.Vehicle.apply(this, arguments);
// not needed here as "Vehicle" is empty
// maybe airplane-spefic instance initialisation
}
Vehicles.Airplane.prototype = Object.create(Vehicles.Vehicle.prototype, {
constructor: {value:Vehicles.Airplane, configurable:true}
}); // inheriting from Vehicle prototype, and overwriting constructor property
Vehicles.Airplane.prototype.takeOff = function () {
//take off stuff
};
// usage:
var airplane = new Vehicles.Airplace(params);
Pure Prototypical Pattern
You are using plain objects instead of constructor functions - no initialisation. To create instances, and to set up inheritance, only Object.create is used. It is like having only the prototype objects, and empty constructors. instancof does not work here. The code would look like this:
Vehicles.Vehicle = {
go: function () {
//go forwards
},
stop: function () {
//stop
}
}; // just an object literal
Vehicles.Airplane = Object.create(Vehicles.Vehicle); // a new object inheriting the go & stop methods
Vehicles.Airplane.takeOff = function () {
//take off stuff
};
// usage:
var airplane = Object.create(Vehicles.Airplane);
airplane.prop = params; // maybe also an "init" function, but that seems weird to me
You got Object.create wrong. The first argument should be an object (maybe that's why people suggested you pass a literal).
In your first example, you're actually passing undefined:
Vehicles.Airplane = Object.create(Vehicles.Vehicle()); // the function call will
// return undefined
The following would work, but it's not very Crockford-ish:
Vehicles.Airplane = Object.create(new Vehicles.Vehicle());
The way I believe Crockford would do it (or, at least, wouldn't complain of):
var Vehicles = {};
Vehicles.Vehicle = {
go : function() {
// go stuff
},
stop : function() {
// go stuff
}
};
Vehicles.Airplane = Object.create(Vehicles.Vehicle, {
takeOff : {
value : function() {
// take-off stuff
}
},
land : {
value: function() {
// land stuff
}
}
});
Note that Vehicles.Vehicle is just a literal, which will be used as the prototype for other objects. When we call Object.create, we pass Vehicles.Vehicle as the prototype, and takeOff and land will be own properties of Vehicles.Airplane. You may then call Object.create again, passing Vehicles.Airplane as the prototype, if you want to create e.g. a Boeing.
The own properties passed as the second parameter are packed in an object that contains a representation of their property descriptors. The outer keys are the names of your properties/methods, and each one points to another object containing the actual implementation as the value. You may also include other keys like enumerable; if you don't they'll take the default values. You can read more about descriptors on the MDN page about Object.defineProperty.
What is the best design pattern for achieving the following (which doesn't work)?
var obj = (function() {
// code defining private variables and methods
var _obj = {
property: value,
method1: function() {
// do stuff
},
method2: function() {
// use property
var prop = _obj.property; // obviously doesn't work
// call method1
obj.method1(); // "obj" not finished being defined yet!
}
};
// obviously now I could do...
var prop = _obj.property;
return _obj;
})();
// and I could now do...
obj.method1();
A variation which I think should work is
var obj = (function() {
var property = value,
method1 = function() {
// do stuff
},
method2 = function() {
// use property
var prop = property;
// call method1
method1();
},
_obj = {
property: property,
method1: method1,
method2: method2
};
return _obj;
})();
Similarly, how does it work for objects meant to be created with the new operator? Within the constructor function itself you can write this.method(). But what if you want to keep the constructor small, only defining those things which will likely be customized upon creation, and then defining the rest in the prototype? (This seems to be the common pattern.) Can the properties / methods within the prototype interact in any way?
var MyObj = function(name) {
this.name = name;
};
var obj = new MyObj('Bob');
MyObj.prototype = {
called_often: function() {
// lots more code than just the following
return document.getElementById('someID').value;
},
global_default: 'value', // can be changed, so need to pull value when run
does_stuff: function(value) {
var str = global_default + value, // can't access global_default on its own
input = MyObj.called_often(), // doesn't work; MyObj.prototype.called_often() DOES
name = this.name; // 'this' used in the prototype doesn't work
// even within a created object
return name + input + str;
}
};
I'm sure there's better ways to achieve my result whenever I run into this problem. This code isn't situation specific and just illustrates the general problem. So you won't be able to give me an alternative for those specific situations I run into. But maybe you can help my overall thinking.
Well, from your first example:
var _obj = {
property: value,
method1: function() {
// do stuff
},
method2: function() {
// use property
var prop = this.property;
// call method1
this.method1();
}
};
That's what the this value is for.
Now, what you cannot do is refer to a property of an "under construction" object from elsewhere in the object literal syntax. (It's hard to give an example because it's just not syntactically possible.) In cases where you want to do that, you do need one or more separate assignment statements.
Guess what? You are making simple stuff complex. Pointy's answer is good, but the prototype way is better for several reasons. That's why I am describing (rather, making corrections in) the last method. Check this fiddle.
var MyObj = function(name) {
this.name = name;
};
MyObj.prototype = {
called_often: function() {
// lots more code than just the following
return 'VALUE'; //document.getElementById('someID').value;
},
global_default: 'value', // can be changed, so need to pull value when run
does_stuff: function(value) {
var str = this.global_default + value, // can't access global_default on its own
input = this.called_often(), // doesn't work; MyObj.prototype.called_often() DOES
name = this.name; // 'this' used in the prototype doesn't work
// even within a created object
return name + input + str;
}
};
var obj = new MyObj('Bob');
Specifically, how can I write prototypes that allow chaining, such as the following:
$('myDiv').html('Hello World').fadeIn('slow');
The technique you're describing is called fluent interface, and it involves returning the same kind of object from all chainable functions. That object's prototype contains the function definitions.
The linked article includes example code in various languages, including javascript.
Just return the appropriate stuff from the functions. The basic rule of thumb is take any method that would normaly return nothing and make it return this instead.
function Constructor(){};
Constructor.prototype = {
foo: function(){
console.log('foo');
return this;
},
bar: function(x){
console.log('bar', x);
return this;
}
}
var obj = new Constructor();
obj.foo().bar(17).bar(42).foo();
In that particular situation, each method returns this. So:
// ... this has to be the most impractical class I've ever written, but it is a
// great illustration of the point.
var returner = new function() {
this.returnThis = function(){
console.log("returning");
return this
}
}
var ret2 = returner.returnThis().returnThis().
returnThis().returnThis() // logs "returning" four times.
console.log( ret2 == returner ) // true
Chaining example:
var avatar = function() {
this.turnLeft = function {
// some logic here
return this;
}
this.turnRight = function {
// some logic here
return this;
}
this.pickUpItem = function {
// some logic here
return this;
}
};
var frodo = new avatar();
frodo.turnLeft().turnRight().pickUpItem();
This is what I'm doing right now.
var foo = function() {
var x = someComplicatedComputationThatMayTakeMoreTime();
this.foo = function() { return x; };
return x;
}
It works but only if foo is called as a function like so
foo();
But what if I want to call it as a normal variable with a value? I could modify the code to be
var foo = function() {
var x = someComplicatedComputationThatMayTakeMoreTime();
this.foo = x;
return x;
}
That would allow me to only call it once as a function and after that as a regular variable. But it's still not what I want. Plus it gets complicated if it accidentally gets called as a function again, returning an error.
Is this even possible in JavaScript?
BTW, this is for a Chrome/Firefox extension, so IE compatibility does not matter.
Ended up using toString because getters don't allow me to redefine the whole attribute, a function must be associated with it. And toString has cleaner syntax.
How about using toString?
var foo = function() {
function someComplicatedComputationThatMayTakeMoreTime() {
//your calculations
}
return {
toString: function() {
return someComplicatedComputationThatMayTakeMoreTime();
}
}
}
More about Object-to-Primitive Conversions in JavaScript
EDIT based on comment. Use a singleton (I think it's called):
myObject.prop = (function(){
function someComplicatedComputationThatMayTakeMoreTime() {
//your calculations
}
return {
toString: function() {
return someComplicatedComputationThatMayTakeMoreTime();
}
}
})()
If only Internet Explorer didn't exist, you could use getters and setters as described by John Resig in this blog article:
John Resig: JavaScript Getters and Setters
... They allow you to bind special functions to an object that look like normal object properties, but actually execute hidden functions instead.
Using a function is your best option for now, however the new JavaScript standard (ECMAScript 5th Ed.) which is being implemented now by all major browser vendors, gives you a method to create accessor properties, where you can define a property with a get and set functions that will be internally called, without worrying to treat this properties as functions, e.g.:
var obj = {};
Object.defineProperty(obj, 'foo', {
get: function () { // getter logic
return 'foo!';
},
set: function (value) {
// setter logic
}
});
obj.foo; // "foo!", no function call
This new standard will take some time to be implemented for all browsers, (the IE9 preview version really disappointed me), and I wouldn't recommend you to use it for production, unless you have total control on the environment where your application will be used.
What I think you want is a lazily instantiated variable, which can be implemented like this.
var myProperty = null;
function getMyProperty() {
return (myProperty = myProperty || builder());
}
This is not practical on the web because IE does not support it, but you can look at
https://developer.mozilla.org/en/defineGetter for examples how to do this.
There are a couple ways to do it, here is one example:
var data = {};
data.__defineGetter__("prop",
(function () {
var value = null;
return function () {
if (null == value) {
value = getYourValueHere();
}
return value;
};
})());
and now you can use it like:
var a = data.prop;
var b = data.prop;
I would recommend a variation on ChaosPandion's answer, but with a closure.
var myProperty = (function () {
var innerProperty = null;
return function() {
return (innerProperty = innerProperty || someComplicatedComputationThatMayTakeMoreTime());
};
})();
and then use myProperty() every time you need to access the variable.
You could define a JavaScript getter. From the Apple JavaScript Coding Guidelines:
myObject.__defineGetter__( "myGetter", function() { return this.myVariable; } );
var someVariable = myObject.myGetter;
See John Resig's post, JavaScript Getters and Setters, and the Defining Getters and Setters page at the Mozilla Developer Centre for more information.
I would use explicit lazy evaluation. Here's my implementation of it based on Scheme's take:
var delay, lazy, force, promise, promiseForced, promiseRunning;
(function () {
var getValue = function () {
return this.value;
};
var RUNNING = {};
var DelayThunk = function (nullaryFunc) {
this.value = nullaryFunc;
};
DelayThunk.prototype.toString = function () {
return "[object Promise]";
};
DelayThunk.prototype.force = function () {
if (promiseRunning (this)) {
throw new Error ("Circular forcing of a promise.");
}
var nullaryFunc = this.value;
this.value = RUNNING;
this.value = nullaryFunc ();
this.force = getValue;
return this.value;
};
var LazyThunk = function (nullaryFunc) {
DelayThunk.call (this, nullaryFunc);
};
LazyThunk.prototype = new DelayThunk (null);
LazyThunk.prototype.constructor = LazyThunk;
LazyThunk.prototype.force = function () {
var result = DelayThunk.prototype.force.call (this);
while (result instanceof LazyThunk) {
result = DelayThunk.prototype.force.call (result);
}
return force (result);
};
delay = function (nullaryFunc) {
return new DelayThunk (nullaryFunc);
};
lazy = function (nullaryFunc) {
return new LazyThunk (nullaryFunc);
};
force = function (expr) {
if (promise (expr)) {
return expr.force ();
}
return expr;
};
promise = function (expr) {
return expr instanceof DelayThunk;
};
promiseForced = function (expr) {
return expr.force === getValue || !promise (expr);
};
promiseRunning = function (expr) {
return expr.value === RUNNING || !promise (expr);
};
}) ();
Example Syntax:
var x = lazy (function () { return expression; });
var y = force (x);
var z = delay (function () { return expression; });
var w = force (z);
Note values are stored once evaluated, so repeated forcing will not do extra computations.
Example usage:
function makeThunk (x, y, z) {
return lazy (function () {
// lots of work done here
});
}
var thunk = makeThunk (arg1, arg2, arg3);
if (condition) {
output (force (thunk));
output (force (thunk)); // no extra work done; no extra side effects either
}
You can use the javascript Proxy class for creating such functionality.
var object = {};
var handler = {
resolvers: {},
get ( target, property, proxy ) {
if ( ! target.hasOwnProperty( property ) && this.resolvers.hasOwnProperty( property ) ) {
// execute the getter for the property;
target[ property ] = this.resolvers[ property ]();
}
return target[ property ];
},
set ( target, property, value, receiver ) {
// if the value is function set as a resolver
if ( typeof value === 'function' ) {
this.resolvers[property] = value;
// otherwise set value to target
} else {
target.property = value;
}
},
has ( target, property, receiver ) {
//true when proxy handler has either a resolver or target has a value;
return this.resolvers.hasOwnProperty( property ) || target.hasOwnProperty( property );
}
};
var lazyObject = new Proxy( object, handler );
Now you can use it like this:
'exampleField' in lazyObject; //returns false
lazyObject.exampleField = function(){ return 'my value' }; // add a resolver function
'exampleField' in lazyObject; //returns true
lazyObject.exampleField; //executes your resolver function and returns 'my value'
This example is to demonstrate the working. You can change after your needs.
Here is a fiddle with a demonstration