Javascript: Object context lost when calling private function [duplicate] - javascript

This question already has answers here:
Javascript: Do I need to put this.var for every variable in an object?
(6 answers)
Closed 8 years ago.
i have a simple Javascript "class" im testing right now. I noticed that "this" in my private functions do not point to the object itself, instead, its pointing to the global scope (window).
Why?
Info: i want to keep mode private, so i used var mode instead of this.mode.
I also want to keep both internal functions private, so user has no access to it.
I basically use .prototype to add public functions to myStorage accessing private members with this.
My code:
var myStorage = function(mymode) {
var mode = mymode;
function privateFunctionA() {
// access this.mode to read mymode from constructor but
// this is pointing to window
};
function privateFunctionB() {
// access this.mode to read mymode from constructor but
// this is pointing to window
};
// check for indexeddb, websql and localstorage
if(mymode == 'A') {
privateFunctionA();
} else {
privateFunctionB();
}
};
myStorage.prototype.publicFunc = function() {
console.log(this.mode); // does this work?
}
var data = new myStorage();

this is always function scoped in JavaScript (unless you pass in a context explicitly using call() or apply(). Therefore, in your private functions, this no longer refers to the same this as in the parent scope. An idiomatic way of handling this in JavaScript is to assign this to a self var in the parent scope. E.g.,
var myStorage = function(mymode) {
var self = this;
var mode = mymode;
function privateFunctionA() {
console.log(self);
};
...
};
Regarding this snippet:
myStorage.prototype.publicFunc = function() {
console.log(this.mode); // does this work?
}
You will need to assign mode to this back in your constructor (instead of as a var). So, the constructor would now become:
var myStorage = function(mymode) {
var self = this;
this.mode = mymode;
function privateFunctionA() {
// works
console.log(self.mode);
};
...
};
And this.mode will also work in your .publicFunc() in this case.
As one more stylistic note, constructor functions in JavaScript usually use proper camel case (i.e., MyStorage).

I dont think you can access the object itself with this when using prototype, because the scope changes and you loose the reference to the primary object itself, so this becomes the window instead.
Check this other question in order to get some more info:
Use of 'prototype' vs. 'this' in JavaScript?
Hope this helps.

Related

How can I pass 'this' object to lower function in javascript? [duplicate]

In C++, the language I'm most comfortable with, usually one declares an object like this:
class foo
{
public:
int bar;
int getBar() { return bar; }
}
Calling getBar() works fine (ignoring the fact that bar might be uninitialized). The variable bar within getBar() is in the scope of class foo, so I don't need to say this->bar unless I really need to make it clear that I'm referring to the class' bar instead of, say, a parameter.
Now, I'm trying to get started with OOP in Javascript. So, I look up how to define classes and try the same sort of thing:
function foo()
{
this.bar = 0;
this.getBar = function() { return bar; }
}
And it gives me bar is undefined. Changing the bar to this.bar fixes the issue, but doing that for every variable clutters up my code quite a bit. Is this necessary for every variable? Since I can't find any questions relating to this, it makes me feel like I'm doing something fundamentally wrong.
EDIT: Right, so, from the comments what I'm getting is that this.bar, a property of an object, references something different than bar, a local variable. Can someone say why exactly this is, in terms of scoping and objects, and if there's another way to define an object where this isn't necessary?
JavaScript has no classes class-based object model. It uses the mightier prototypical inheritance, which can mimic classes, but is not suited well for it. Everything is an object, and objects [can] inherit from other objects.
A constructor is just a function that assigns properties to newly created objects. The object (created by a call with the new keyword) can be referenced trough the this keyword (which is local to the function).
A method also is just a function which is called on an object - again with this pointing to the object. At least when that function is invoked as a property of the object, using a member operator (dot, brackets). This causes lots of confusion to newbies, because if you pass around that function (e.g. to an event listener) it is "detached" from the object it was accessed on.
Now where is the inheritance? Instances of a "class" inherit from the same prototype object. Methods are defined as function properties on that object (instead of one function for each instance), the instance on which you call them just inherits that property.
Example:
function Foo() {
this.bar = "foo"; // creating a property on the instance
}
Foo.prototype.foo = 0; // of course you also can define other values to inherit
Foo.prototype.getBar = function() {
// quite useless
return this.bar;
}
var foo = new Foo; // creates an object which inherits from Foo.prototype,
// applies the Foo constructor on it and assigns it to the var
foo.getBar(); // "foo" - the inherited function is applied on the object and
// returns its "bar" property
foo.bar; // "foo" - we could have done this easier.
foo[foo.bar]; // 0 - access the "foo" property, which is inherited
foo.foo = 1; // and now overwrite it by creating an own property of foo
foo[foo.getBar()]; // 1 - gets the overwritten property value. Notice that
(new Foo).foo; // is still 0
So, we did only use properties of that object and are happy with it. But all of them are "public", and can be overwritten/changed/deleted! If that doesn't matter you, you're lucky. You can indicate "privateness" of properties by prefixing their names with underscores, but that's only a hint to other developers and may not be obeyed (especially in error).
So, clever minds have found a solution that uses the constructor function as a closure, allowing the creating of private "attributes". Every execution of a javascript function creates a new variable environment for local variables, which may get garbage collected once the execution has finished. Every function that is declared inside that scope also has access to these variables, and as long as those functions could be called (e.g. by an event listener) the environment must persist. So, by exporting locally defined functions from your constructor you preserve that variable environment with local variables that can only be accessed by these functions.
Let's see it in action:
function Foo() {
var bar = "foo"; // a local variable
this.getBar = function getter() {
return bar; // accesses the local variable
}; // the assignment to a property makes it available to outside
}
var foo = new Foo; // an object with one method, inheriting from a [currently] empty prototype
foo.getBar(); // "foo" - receives us the value of the "bar" variable in the constructor
This getter function, which is defined inside the constructor, is now called a "privileged method" as it has access to the "private" (local) "attributes" (variables). The value of bar will never change. You also could declare a setter function for it, of course, and with that you might add some validation etc.
Notice that the methods on the prototype object do not have access to the local variables of the constructor, yet they might use the privileged methods. Let's add one:
Foo.prototype.getFooBar = function() {
return this.getBar() + "bar"; // access the "getBar" function on "this" instance
}
// the inheritance is dynamic, so we can use it on our existing foo object
foo.getFooBar(); // "foobar" - concatenated the "bar" value with a custom suffix
So, you can combine both approaches. Notice that the privileged methods need more memory, as you create distinct function objects with different scope chains (yet the same code). If you are going to create incredibly huge amounts of instances, you should define methods only on the prototype.
It gets even a little more complicated when you are setting up inheritance from one "class" to another - basically you have to make the child prototype object inherit from the parent one, and apply the parent constructor on child instances to create the "private attributes". Have a look at Correct javascript inheritance, Private variables in inherited prototypes, Define Private field Members and Inheritance in JAVASCRIPT module pattern and How to implement inheritance in JS Revealing prototype pattern?
Explicitly saying this.foo means (as you've understood well) that you're interested about the property foo of the current object referenced by this. So if you use: this.foo = 'bar'; you're going to set the property foo of the current object referenced by this equals to bar.
The this keyword in JavaScript doesn't always mean the same thing like in C++. Here I can give you an example:
function Person(name) {
this.name = name;
console.log(this); //Developer {language: "js", name: "foo"} if called by Developer
}
function Developer(name, language) {
this.language = language;
Person.call(this, name);
}
var dev = new Developer('foo', 'js');
In the example above we're calling the function Person with the context of the function Developer so this is referencing to the object which will be created by Developer. As you might see from the console.log result this is comes from Developer. With the first argument of the method call we specify the context with which the function will be called.
If you don't use this simply the property you've created will be a local variable. As you might know JavaScript have functional scope so that's why the variable will be local, visible only for the function where it's declared (and of course all it's child functions which are declared inside the parent). Here is an example:
function foo() {
var bar = 'foobar';
this.getBar = function () {
return bar;
}
}
var f = new foo();
console.log(f.getBar()); //'foobar'
This is true when you use the var keyword. This means that you're defining bar as local variable if you forget var unfortunately bar will became global.
function foo() {
bar = 'foobar';
this.getBar = function () {
return bar;
}
}
var f = new foo();
console.log(window.bar); //'foobar'
Exactly the local scope can help you to achieve privacy and encapsulation which are one of the greatest benefits of OOP.
Real world example:
function ShoppingCart() {
var items = [];
this.getPrice = function () {
var total = 0;
for (var i = 0; i < items.length; i += 1) {
total += items[i].price;
}
return total;
}
this.addItem = function (item) {
items.push(item);
}
this.checkOut = function () {
var serializedItems = JSON.strigify(items);
//send request to the server...
}
}
var cart = new ShoppingCart();
cart.addItem({ price: 10, type: 'T-shirt' });
cart.addItem({ price: 20, type: 'Pants' });
console.log(cart.getPrice()); //30
One more example of the benefits of the JavaScript scope is the Module Pattern.
In Module Pattern you can simulate privacy using the local functional scope of JavaScript. With this approach you can have both private properties and methods. Here is an example:
var module = (function {
var privateProperty = 42;
function privateMethod() {
console.log('I\'m private');
}
return {
publicMethod: function () {
console.log('I\'m public!');
console.log('I\'ll call a private method!');
privateMethod();
},
publicProperty: 1.68,
getPrivateProperty: function () {
return privateProperty;
},
usePublicProperty: function () {
console.log('I\'ll get a public property...' + this.publicProperty);
}
}
}());
module.privateMethod(); //TypeError
module.publicProperty(); //1.68
module.usePublicProperty(); //I'll get a public property...1.68
module.getPrivateProperty(); //42
module.publicMethod();
/*
* I'm public!
* I'll call a private method!
* I'm private
*/
There's a little strange syntax with the parentless wrapping the anonymous functions but forget it for the moment (it's just executing the function after it's being initialized). The functionality can be saw from the example of usage but the benefits are connected mainly of providing a simple public interface which does not engages you with all implementation details. For more detailed explanation of the pattern you can see the link I've put above.
I hope that with this :-) information I helped you to understand few basic topics of JavaScript.
function Foo() {
this.bar = 0;
this.getBar = function () { return this.bar };
}
When you call the function above with the new keyword - like this...
var foo = new Foo();
... - a few things happen:
1) an object is created
2) the function is executed with the this keyword referencing that object.
3) that object is returned.
foo, then, becomes this object:
{
bar: 0,
getBar: function () { return this.bar; }
};
Why not, then, just do this:
var foo = {
bar: 0,
getBar: function () { return this.bar; }
};
You would, if it's just that one simple object.
But creating an object with a constructor (that's how it's called) gives us a big advantage in creating multiple of the "same" objects.
See, in javascript, all functions are created with a prototype property [an object], and all objects created with that function (by calling it with the new keyword) are linked to that prototype object. This is why it's so cool - you can store all common methods (and properties, if you wanted to) in the prototype object, and save a lot of memory. This is how it works:
function Foo( bar, bob ) {
this.bar = bar;
this.bob = bob;
}
Foo.prototype.calculate = function () {
// 'this' points not to the 'prototype' object
// as you could've expect, but to the objects
// created by calling Foo with the new keyword.
// This is what makes it work.
return this.bar - this.bob;
};
var foo1 = new Foo(9, 5);
var foo2 = new Foo(13, 3);
var result1 = foo1.calculate();
var result2 = foo2.calculate();
console.log(result1); //logs 4
console.log(result2); //logs 10
That's it!
To get closer to OOP in JavaScript, you might want to take a look into a Module design pattern (for instance, described here).
Based on the closure effect, this pattern allows emulating private properties in your objects.
With 'private' properties you can reference them directly by its identifier (i.e., no this keyword as in constructors).
But anyway, closures and design patterns in JS - an advanced topic. So, get familiar with basics (also explained in the book mentioned before).
In javascript this always refers to the owner object of the function. For example, if you define your function foo() in a page, then owner is the javascript object windows; or if you define the foo() on html element <body>, then the owner is the html element body; and likewise if you define the function onclick of element <a>, then the owner is the anchor.
In your case, you are assigning a property bar to the 'owner' object at the begining and trying to return the local variable bar.
Since you never defined any local varialbe bar, it is giving you as bar is undefined.
Ideally your code should have defined the variable as var bar; if you want to return the value zero.
this is like a public access modifier of objects(variables or functions), while var is the private access modifier
Example
var x = {};
x.hello = function(){
var k = 'Hello World';
this.m = 'Hello JavaScript';
}
var t = new x.hello();
console.log(t.k); //undefined
console.log(t.m); //Hello JavaScript

Differences between "this" in JavaScript and ActionScript

My background is heavy in JavaScript. I have a very advanced understanding of both ES5 and ES6. At work I was recently assigned a project involving an older flash application, which uses AS2. It is my understanding that ActionScript is very similar to ES5, but with classes and optional strict typing (akin to TypeScript and Flow), as well as a few other classic OO features. It is fairly straightforward so far, but I'm having trouble understanding how this and references work in ActionScript.
This is my understanding for JavaScript. this in a function can reference:
A bound variable, if using Function.bind() (as well as Function.call() and Function.apply()), which cannot be changed in the bound function, for example:
function func() {
return this.number;
}
var bound = func.bind({ number: 2 });
console.log(bound()); // 2
An object, if the function is called as a method on that object, for example:
function func() {
return this.number;
}
var obj = { number: 2, func: func };
console.log(obj.func()); // 2
An instance of a class, if that function is defined on the prototype of that class, for example:
function Class() {
this.number = 2;
}
Class.prototype.func = function func() {
return this.number;
}
console.log(new Class().func()); // 2
The global object, if the function is called without any kind of binding or object or instance attached to it, for example:
var number = 2;
function func() {
return this.number;
}
console.log(func()); // 2
In ActionScript things seem to be a bit different. For one thing, you can access class members without this if you are doing it within a method of that class, similar to languages like C# and Java:
class MyClass {
private var number:Number = 2;
public function func():Number {
return number;
}
}
trace(new MyClass().func()); // 2
Also, the ActionScript standard library doesn't seem to have a Function.bind() method, though it does have Function.apply() and Function.call() which seem to work just like the JavaScript variations: http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/2/help.html?content=00001072.html#265677. There also don't seem to be prototypes, which makes sense because classes are more abstract syntactic structures rather than functions (just like C#/Java) based on my understanding.
So my question is, excluding the lack of Function.bind() and Function.prototype, are the rules the same between ActionScript and JavaScript?
In addition, what happens if I do this:
class SomeClip extends MovieClip {
private var childClip:MovieClip;
private var number:Number = 2;
public function SomeClip() {
this.onLoad = function() {
// SomeClip onLoad hander, `this` will be the SomeClip instance
childClip._visible = true; // How is childClip resolved here?
childClip.onRelease = function() {
// childClip onRelease handler, `this` will be childClip
trace(number); // How is number resolved here?
};
};
}
}
Basically, if you access a member without this in an event handler, or some other loose function that is not a method of the class, what happens? I would guess that in the first case, it would resolve to this.childClip and work as one would expect, but in the second case, the resolution would fail because the onRelease handler's closure won't contain a reference to the SomeClip instance.
I see the comments that have been written so far are more focused on JS, so I'll try my best to answer from an ActionScript perspective.
In the world of AS2/AS3, functions that are defined as methods on a class have their this value bound to the class. This is typical of many higher-level languages with modern classes, such as Java, Haxe, etc. As such, in ActionScript you'll rarely find the need to use the this keyword other than cases where a variable name might be shadowed by a function argument:
public function Point(x:Number = 0, y:Number = 0)
{
// A rare but necessary use-case of "this" in AS2/AS3
this.x = x;
this.y = y;
}
On the other hand, if the function you provide is anonymous as in the example you wrote, the behavior depends on whether or not you prepend this:
childClip.onRelease = function() {
trace(number);
};
In this case ActionScript is able to determine number is a member of the class, and will print 2 like you expected since. This is because the interpreter looks for the next closest thing in the stack. In other words, you were ambiguous by excluding this so it knows it needs to perform a lookup.
However if you were to trace(this.number) instead, you would find that you get an undefined (and possibly even an error). This is because this is not a member variable on the class, and now points to a "global object" similar to JS. To avoid dancing with the global object, it's common practice for ActionScript developers to define all of their listeners as class instance methods:
class MyClass extends EventDispatcher
{
private function MyClass()
{
addEventListener(Event.CHANGE, onChangeEvent);
}
private function onChangeEvent(e:Event) {
trace(this); // refers to this class, and no need for bind() like JS
}
}
Well organized AS3 code will almost never contain inline anonymous functions, since it's much easier to handle garbage collection by using explicit function references.
One last thing to note - you can expect functions that are methods of regular Objects in ActionScript to behave like JavaScript where passing them around via event listeners will result in the context of this being lost, and Flash will not do the magic lookup to locate the variable you referenced:
var obj = {
func: function () {
trace(this); // weird global object
}
};
addEventListener(Event.CHANGE, obj.func);
Hope that helps!
In AS2 functions are not bound and get "this" reference passed (evidently via Function.apply or by the object reference) in the moment of call:
function getIndex()
{
trace(this.index);
}
var A = {index:1, getIndex:getIndex};
var B = {index:2, getIndex:getIndex};
A.getIndex(); // 1
B.getIndex(); // 2
B.getIndex.apply(A); // 1
Binding methods to certain objects was called "delegating": http://help.adobe.com/en_US/AS2LCR/Flash_10.0/help.html?content=00001842.html#1001423 In a nutshell, functions are objects too and you can create special function object that has references to both method to call and "this" object to pass:
function getIndex()
{
trace(this.index);
}
function bind(method, target):Function
{
var result:Function = function()
{
// arguments.callee is always a reference
// to the current function object
arguments.callee.method.apply(arguments.callee.target);
}
result.method = method;
result.target = target;
return result;
}
var A = {index:1};
var B = {index:2};
A.getIndex = bind(getIndex, A);
B.getIndex = bind(getIndex, B);
A.getIndex(); // 1
B.getIndex(); // 2
B.getIndex.apply(A); // 2
Then, if you don't use "this" reference, once you address some variable by its name there are several contexts that are searched for such a variable in order:
local function variables
local wrapper function variables (this one is truly horrible for no one really knows where these variables exist and it is a potent memory leak)
MovieClip, that holds the function code, local variables
global variables
Play with the following code, comment some "index" variables and you'll see it:
// Global variable.
_global.index = 6;
// MovieClip local variable.
var index = 5;
function wrap():Function
{
// Wrapper function local variable.
var index = 4;
return function()
{
// Function local variable.
var index = 3;
trace(index);
}
}
wrap()();

javascript Object - unreachable method [duplicate]

This question already has answers here:
How to access the correct `this` inside a callback
(13 answers)
Closed 8 years ago.
I have a javascript object with a handful of methods, and some of the methods reference each other. The methods become undefined in some situations, regardless of using the key word "this" with them. I'm not sure how to go about it. Here is a snippet of my object below. Method getContent() when accessed in onClickMngLinksBtn method becomes undefined when a button with onClickMngLinksBtn event binding is clicked. This same method works fine when accessed with:
InLineLinksObj.getContent()
I'm hoping the solution is something very basic to Objects in javascript. Any help is much appreciated.
function InLineLinks(formController, fieldController)
{
....
this.getContent = function(){
var field = this.getFieldController().getCustomFieldByName(this.content_field);
if(field){
return field.getValue();
}
return null;
};
this.onClickMngLinksBtn = function(){
var links = [];
var txt = this.getContent();
}
....
}
See here, here or here, or many other places for an explanation of scope and the this keyword in javascript. Essentially,
this always refers to the “owner” of the function we're executing
and when your method is triggered by a DOM event, then the owner is either the window or the HTML element that was clicked (or moused over, etc.), instead of the containing object.
A simple way around it in your case is to define a second variable self which will retain a reference to the containing object.
function InLineLinks(formController, fieldController) {
var self = this;
....
self.getContent = function(){
var field = self.getFieldController().getCustomFieldByName(self.content_field);
if(field){
return field.getValue();
}
return null;
};
self.onClickMngLinksBtn = function(){
var links = [];
var txt = self.getContent();
}
....
}
The way you have it, InLineLinks is a constructor and getContent is a method of it's instances.
Then, you must instantiate InLineLinks to reach getContent:
new InLineLinks().getContent()

Javascript Object : Literal Vs Constructor [duplicate]

This question already has answers here:
Literal notation VS. constructor to create objects in JavaScript [duplicate]
(2 answers)
Closed 9 years ago.
For creating Javascript object, we can use Literal or Constructor way;
In Constructor way, we say;
function myObj(){
this.myProp1 = "abc";
this.myProp2 = "xyz";
}
In literal way, we say;
var myObj = {
myProp1:"abc",
myProp2:"xyz",
}
My question is when declaring properties, why there is a difference like why do we use "this.myProp1" in case of Constructor way and not use "this" in Literal way ?
The key difference between the two is in how they are intended to be used. A constructor, as its name suggests, is designed to create and set up multiple instances of an object. An object literal on the other hand is one-off, like string and number literals, and used more often as configuration objects or global singletons (e.g. for namespacing).
There are a few subtleties about the first example to note:
When the code is executed, an anonymous function is created and assigned to myObj, but nothing else happens. methodOne and methodTwo don't exist until myObj is explicitly called.
Depending on how myObj is called, the methods methodOne and methodTwo will end up in different places:
myObj():
Since no context is supplied, the this defaults to window and the methods will become global.
var app1 = new myObj():
Due to the new keyword, a new object is created and becomes the default context. this refers to the new object, and the methods will get assigned to the new object, which subsequently gets assigned to app1. However, myObj.methodOne remains undefined.
myObj.call(yourApp):
This calls my myObj but sets the context to be another object, yourApp. The methods will get assigned to yourApp, overriding any properties of yourApp with the same names. This is a really flexible method that allows multiple inheritance or mixins in Javascript.
Constructors also allow another level of flexibility since functions provide closures, while object literals do not. If for example methodOne and methodTwo rely on a common variable password that is private to the object (cannot be accessed outside the constructor), this can be achieved very simply by doing:
var myObj = function(){
var variableOne = "ABCD1234";
this.methodOne = function(){
// Do something with variableOne
console.log(variableOne);
};
this.methodTwo = function(){
// Do something else with variableOne
};
};
myObj();
alert(variableOne); // undefined
alert(myObj.variableOne); // undefined
If you wanted to make variableOne exposed (public) you'd do:
var myObj = function(){
this.variableOne = "ABCD1234";
this.methodOne = function(){
// Do something with variableOne
console.log(this.variableOne);
};
this.methodTwo = function(){
// Do something else with variableOne
};
};
myObj();
alert(variableOne); // undefined
alert(myObj.variableOne); // ABCD1234
When defining something literally, the object is being built directly in the code. It doesn't exist yet until it is complete. At that point, this would have no meaning (not that there is any need for it either).
To understand this in the object creation function, first realize that this is special in JavaScript. Whenever you call a function, you can pass anything you want to be this. In general, things like event handlers will pass the event-causing DOM object to be passed as this. In your code, you do this as: MyFunction.call(whatever_needs_to_be_this[, param0, param1]);. When you use the new operator, such as var mything = new SomeThing();, JavaScript is essentially doing something like:
var mything = {};
SomeThing.call(mything);
this in this case is going to be mything in your function.

How to use scope in JavaScript for Function constructor?

If I were to make a new function using the Function constructor, how could I give it a non-temporary scope to access besides window (meaning the scope only has to be evaluated once, not every time the function is called)? The purpose is to construct multiple variables that require some pretty costly calculations, and I don't want to reconstruct them every time the function is called, but I also don't want to store them in window. Any ideas?
You could bind your function to the specific context using bind keyword:
var context = {};
var f = new Function("args", "return this").bind(context);
f(); // context
Since bind is defined in ECMA 5th, it may not be present in all browsers, here's a workaround
For the above described purpose, you use static functions. You cannot prevent scope from being evaluated at every call, because this is the way JavaScript works, but you can speed it up by not having window in the scoping chain.
var namespace = {};
namespace.someMethod = function() {
// do something here.
};
Now anywhere in your code, you can call that method by using namespace.someMethod();. Just be careful. The above is a static method. You can call it without instantiating. But you MUST NOT use this.property inside a static function. It is a potentially very dangerous operation, as it may give an extension access to the global object and basically un-restricted permissions.
And the above is a static JavaScript method. It does not have window in the scoping chain.
Here's how to create a constructor using the same pattern. When you want to use a constructor, you always instantiate before using. For that you have the new keyword.
var namespace = {};
namespace.coordinate = function(x, y) {
this.x = x;
this.y = y;
};
namespace.coordinate.prototype.addCoordinates = function() {
return this.x + this.y;
};
Now anywhere in your code you can do:
var coordinateObject = new namespace.coordinate(5,10);
// you have created a new instance.
alert(coordinateObject.addCoordinates());// will alert 15;
// now you can make as many as you want. They will behave as instances.
// This means they do not interfere with each other in any way.
// They just have the same properties and methods, but the instance values
// Can be entirely different.
var secondCoordinateObject = new namespace.coordinate(10, 25);
alert(secondCoordinateObject.addCoordinates());// will output 35.
You have successufully created an instance of your namespace.coordinate class. Using the pattern I gave you, you can replicate almost the entire functionality of Java or C or any other Object Oriented language.
var yourNamespace = {
func1: function() {
},
func2: function() {
}
};
...
yourNamespace.func1();
you can call the function that you want by calling the function from name space like this yourNamespace.func1();
The ever-growing method of creating, storing, hiding, revealing, and grouping variables & functions is through the magic of "closures", Javascript's most powerful and yet unsung feature:
var groupObj = (function (setUp) {
// maintained by reference, hidden
var _priVar = setUp * 2;
// maintained by reference, revealed (through returned object)
var _pubVar = 8;
var _pubFunc = function (x) {
_priVar += x;
_pubVar += x;
}
var lostVar = setUp * 99; // not referenced, hidden, so evaporates!
return {
'pubVar' : _pubVar,
'pubFunc' : _pubFunc
}
}(4)); // runs immediately with 4 as setUp, revealing pubVar & pubFunc
Then...
groupObj.pubFunc(7); // runs public function, adds 7 to both variables
alert('public variable: ' + groupObj.pubVar); // alerts public variable
A closure occurs whenever there is a function inside of another function. A variable inside of the outter function will be maintained so long as it is referenced by the inner function, kind of a "no-mans land" where a variable is forced to exist by a reference to it from a lower scope, but is hidden from the higher scope due to the innate principles of Javascript.
There are a few other ways to use closures, replacing the object constructor, one-off conflict-free private functions, and more. There are many posts here about them.

Categories

Resources