html rotate entire canvas by 90 degrees - javascript

I have an image drawn to an html cavas. I would like to be able to rotate the image by 90 degrees but I can't seem to find an example on how to rotate the entire canvas image, only an object on the canvas.
Does anyone have example code to rotate an entire canvas by 90 degrees?
I accepted an anwser below but wanted to provide additional example code : http://jsfiddle.net/VTyNF/1/
<canvas id="myCanvas" width="578" height="200"></canvas>
<script>
var canvas = document.getElementById('myCanvas');
var context = canvas.getContext('2d');
context.translate(canvas.width/2,canvas.height/2)
context.rotate(90 * (Math.PI / 180));
context.beginPath();
context.rect(188 - canvas.width/2, 50 - canvas.height/2, 200, 100);
context.fillStyle = 'yellow';
context.fill();
context.lineWidth = 7;
context.strokeStyle = 'black';
context.stroke();
</script>

You would have to apply this rotation before you draw your canvas. You can't rotate anything that is already drawn.
So:
To rotate a canvas, the content.rotate() expects a value in radians. So first, lets make it simple by converting degrees to radians using:
function getRadianAngle(degreeValue) {
return degreeValue * Math.PI / 180;
}
You may want to translate the canvas first before rotating so that it's origin is set correctly.
context.translate(context.width/2,context.height/2);
Once we know what value we want, we simply rotate the canvas before we draw anything!
Please note, in your example, the rectangle you have drawn, is also being offset in the first two parameters of context.rect(X,Y,W,H)`.
I find it's easier to set widths as variables, then do simple math to re position the box automatically, notice now it sits perfectly in the center, and rotates nicely!
DEMO: http://jsfiddle.net/shannonhochkins/VTyNF/6/

Say your canvas element has id "foo". In JavaScript you could do something like this:
var canvas = document.getElementById('foo'),
context = canvas.getContext('2d');
// Rotates the canvas 90 degrees
context.rotate(90 * (Math.PI / 180));

Could you use CSS to rotate the <canvas> element with transform: rotate(90deg);?

You can easily rotate the image ninety degrees by manipulating the pixel data. If your canvas isn't square, you will have to make some choices about what the 'correct' answer will be.
Use the getImageData function to retrieve the pixels, manipulate them in the usual manner, and use putImageData to display the result.

This version doesn't require center point for 90 degree turn:
(Not as easy becase it's a 1d array with 4 values per pixel, initialDimensions means horizontal or 0, 180 rotation state vs 90, 270)
//...
const canvas = document.getElementById('canvas');
const context = canvas.getContext('2d', {willReadFrequently: true});
const img = document.createElement('img');
const file = inp.files[0]; // file from user input
img.src = URL.createObjectURL(file);
img.initialDimensions = true;
img.addEventListener('load', function () {
canvas.width = this.width;
canvas.height = this.height;
canvas.crossOrigin = "anonymous";
context.drawImage(img, 0, 0);
rotateClockwiseBy90(canvas, context, img);
}
}
function rotateClockwiseBy90(canvas, context, img) {
if (img.initialDimensions == undefined) {
img.initialDimensions = true;
}
var width, height;
if (img.initialDimensions) {
width = img.naturalWidth;
height = img.naturalHeight;
img.initialDimensions = false;
}
else {
width = img.naturalHeight;
height = img.naturalWidth;
img.initialDimensions = true;
}
const imageData = context.getImageData(0, 0, width, height);
const rotatedImageData = context.createImageData(height, width);
//[redIndex, greenIndex, blueIndex, alphaIndex]
const width4 = width * 4;
const height4 = height * 4;
for (let y = 0; y < height4; y += 4) {
for (let x = 0; x < width4; x += 4) {
rotatedImageData.data[x * height + (height4 - y -1) - 3] = imageData.data[y * width + x];
rotatedImageData.data[x * height + (height4 - y -1) - 2] = imageData.data[y * width + x + 1];
rotatedImageData.data[x * height + (height4 - y -1) - 1] = imageData.data[y * width + x + 2];
rotatedImageData.data[x * height + (height4 - y -1)] = imageData.data[y * width + x + 3];
}
}
const cw = canvas.width;
canvas.width = canvas.height;
canvas.height = cw;
context.putImageData(rotatedImageData, 0, 0);
}
If someone is trying to understand the logic:
rotatedImageData.data[x * height ...
should really be:
rotatedImageData.data[x / 4 * height * 4 ...
because for the rotated array x represents row number and height represents row length, but the result is same.
Version for counterclockwise rotation:
for (let y = 0; y < height4; y += 4) {
for (let x = 0; x < width4; x += 4) {
rotatedImageData.data[(height4 * (width - x/4) - height4 + y)] = imageData.data[y * width + x];
rotatedImageData.data[(height4 * (width - x/4) - height4 + y) + 1] = imageData.data[y * width + x + 1];
rotatedImageData.data[(height4 * (width - x/4) - height4 + y) + 2] = imageData.data[y * width + x + 2];
rotatedImageData.data[(height4 * (width - x/4) - height4 + y) + 3] = imageData.data[y * width + x + 3];
}
}

Related

HTML5 Canvas - Certain images are blurry when drawn with context.drawImage() [duplicate]

I use html5 canvas elements to resize images im my browser. It turns out that the quality is very low. I found this: Disable Interpolation when Scaling a <canvas> but it does not help to increase the quality.
Below is my css and js code as well as the image scalled with Photoshop and scaled in the canvas API.
What do I have to do to get optimal quality when scaling an image in the browser?
Note: I want to scale down a large image to a small one, modify color in a canvas and send the result from the canvas to the server.
CSS:
canvas, img {
image-rendering: optimizeQuality;
image-rendering: -moz-crisp-edges;
image-rendering: -webkit-optimize-contrast;
image-rendering: optimize-contrast;
-ms-interpolation-mode: nearest-neighbor;
}
JS:
var $img = $('<img>');
var $originalCanvas = $('<canvas>');
$img.load(function() {
var originalContext = $originalCanvas[0].getContext('2d');
originalContext.imageSmoothingEnabled = false;
originalContext.webkitImageSmoothingEnabled = false;
originalContext.mozImageSmoothingEnabled = false;
originalContext.drawImage(this, 0, 0, 379, 500);
});
The image resized with photoshop:
The image resized on canvas:
Edit:
I tried to make downscaling in more than one steps as proposed in:
Resizing an image in an HTML5 canvas and
Html5 canvas drawImage: how to apply antialiasing
This is the function I have used:
function resizeCanvasImage(img, canvas, maxWidth, maxHeight) {
var imgWidth = img.width,
imgHeight = img.height;
var ratio = 1, ratio1 = 1, ratio2 = 1;
ratio1 = maxWidth / imgWidth;
ratio2 = maxHeight / imgHeight;
// Use the smallest ratio that the image best fit into the maxWidth x maxHeight box.
if (ratio1 < ratio2) {
ratio = ratio1;
}
else {
ratio = ratio2;
}
var canvasContext = canvas.getContext("2d");
var canvasCopy = document.createElement("canvas");
var copyContext = canvasCopy.getContext("2d");
var canvasCopy2 = document.createElement("canvas");
var copyContext2 = canvasCopy2.getContext("2d");
canvasCopy.width = imgWidth;
canvasCopy.height = imgHeight;
copyContext.drawImage(img, 0, 0);
// init
canvasCopy2.width = imgWidth;
canvasCopy2.height = imgHeight;
copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);
var rounds = 2;
var roundRatio = ratio * rounds;
for (var i = 1; i <= rounds; i++) {
console.log("Step: "+i);
// tmp
canvasCopy.width = imgWidth * roundRatio / i;
canvasCopy.height = imgHeight * roundRatio / i;
copyContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvasCopy.width, canvasCopy.height);
// copy back
canvasCopy2.width = imgWidth * roundRatio / i;
canvasCopy2.height = imgHeight * roundRatio / i;
copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);
} // end for
// copy back to canvas
canvas.width = imgWidth * roundRatio / rounds;
canvas.height = imgHeight * roundRatio / rounds;
canvasContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvas.width, canvas.height);
}
Here is the result if I use a 2 step down sizing:
Here is the result if I use a 3 step down sizing:
Here is the result if I use a 4 step down sizing:
Here is the result if I use a 20 step down sizing:
Note: It turns out that from 1 step to 2 steps there is a large improvement in image quality but the more steps you add to the process the more fuzzy the image becomes.
Is there a way to solve the problem that the image gets more fuzzy the more steps you add?
Edit 2013-10-04: I tried the algorithm of GameAlchemist. Here is the result compared to Photoshop.
PhotoShop Image:
GameAlchemist's Algorithm:
Since your problem is to downscale your image, there is no point in talking about interpolation -which is about creating pixel-. The issue here is downsampling.
To downsample an image, we need to turn each square of p * p pixels in the original image into a single pixel in the destination image.
For performances reasons Browsers do a very simple downsampling : to build the smaller image, they will just pick ONE pixel in the source and use its value for the destination. which 'forgets' some details and adds noise.
Yet there's an exception to that : since the 2X image downsampling is very simple to compute (average 4 pixels to make one) and is used for retina/HiDPI pixels, this case is handled properly -the Browser does make use of 4 pixels to make one-.
BUT... if you use several time a 2X downsampling, you'll face the issue that the successive rounding errors will add too much noise.
What's worse, you won't always resize by a power of two, and resizing to the nearest power + a last resizing is very noisy.
What you seek is a pixel-perfect downsampling, that is : a re-sampling of the image that will take all input pixels into account -whatever the scale-.
To do that we must compute, for each input pixel, its contribution to one, two, or four destination pixels depending wether the scaled projection of the input pixels is right inside a destination pixels, overlaps an X border, an Y border, or both.
( A scheme would be nice here, but i don't have one. )
Here's an example of canvas scale vs my pixel perfect scale on a 1/3 scale of a zombat.
Notice that the picture might get scaled in your Browser, and is .jpegized by S.O..
Yet we see that there's much less noise especially in the grass behind the wombat, and the branches on its right. The noise in the fur makes it more contrasted, but it looks like he's got white hairs -unlike source picture-.
Right image is less catchy but definitively nicer.
Here's the code to do the pixel perfect downscaling :
fiddle result :
http://jsfiddle.net/gamealchemist/r6aVp/embedded/result/
fiddle itself : http://jsfiddle.net/gamealchemist/r6aVp/
// scales the image by (float) scale < 1
// returns a canvas containing the scaled image.
function downScaleImage(img, scale) {
var imgCV = document.createElement('canvas');
imgCV.width = img.width;
imgCV.height = img.height;
var imgCtx = imgCV.getContext('2d');
imgCtx.drawImage(img, 0, 0);
return downScaleCanvas(imgCV, scale);
}
// scales the canvas by (float) scale < 1
// returns a new canvas containing the scaled image.
function downScaleCanvas(cv, scale) {
if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 ');
var sqScale = scale * scale; // square scale = area of source pixel within target
var sw = cv.width; // source image width
var sh = cv.height; // source image height
var tw = Math.floor(sw * scale); // target image width
var th = Math.floor(sh * scale); // target image height
var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array
var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array
var tX = 0, tY = 0; // rounded tx, ty
var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y
// weight is weight of current source point within target.
// next weight is weight of current source point within next target's point.
var crossX = false; // does scaled px cross its current px right border ?
var crossY = false; // does scaled px cross its current px bottom border ?
var sBuffer = cv.getContext('2d').
getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba
var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb
var sR = 0, sG = 0, sB = 0; // source's current point r,g,b
/* untested !
var sA = 0; //source alpha */
for (sy = 0; sy < sh; sy++) {
ty = sy * scale; // y src position within target
tY = 0 | ty; // rounded : target pixel's y
yIndex = 3 * tY * tw; // line index within target array
crossY = (tY != (0 | ty + scale));
if (crossY) { // if pixel is crossing botton target pixel
wy = (tY + 1 - ty); // weight of point within target pixel
nwy = (ty + scale - tY - 1); // ... within y+1 target pixel
}
for (sx = 0; sx < sw; sx++, sIndex += 4) {
tx = sx * scale; // x src position within target
tX = 0 |  tx; // rounded : target pixel's x
tIndex = yIndex + tX * 3; // target pixel index within target array
crossX = (tX != (0 | tx + scale));
if (crossX) { // if pixel is crossing target pixel's right
wx = (tX + 1 - tx); // weight of point within target pixel
nwx = (tx + scale - tX - 1); // ... within x+1 target pixel
}
sR = sBuffer[sIndex ]; // retrieving r,g,b for curr src px.
sG = sBuffer[sIndex + 1];
sB = sBuffer[sIndex + 2];
/* !! untested : handling alpha !!
sA = sBuffer[sIndex + 3];
if (!sA) continue;
if (sA != 0xFF) {
sR = (sR * sA) >> 8; // or use /256 instead ??
sG = (sG * sA) >> 8;
sB = (sB * sA) >> 8;
}
*/
if (!crossX && !crossY) { // pixel does not cross
// just add components weighted by squared scale.
tBuffer[tIndex ] += sR * sqScale;
tBuffer[tIndex + 1] += sG * sqScale;
tBuffer[tIndex + 2] += sB * sqScale;
} else if (crossX && !crossY) { // cross on X only
w = wx * scale;
// add weighted component for current px
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// add weighted component for next (tX+1) px
nw = nwx * scale
tBuffer[tIndex + 3] += sR * nw;
tBuffer[tIndex + 4] += sG * nw;
tBuffer[tIndex + 5] += sB * nw;
} else if (crossY && !crossX) { // cross on Y only
w = wy * scale;
// add weighted component for current px
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// add weighted component for next (tY+1) px
nw = nwy * scale
tBuffer[tIndex + 3 * tw ] += sR * nw;
tBuffer[tIndex + 3 * tw + 1] += sG * nw;
tBuffer[tIndex + 3 * tw + 2] += sB * nw;
} else { // crosses both x and y : four target points involved
// add weighted component for current px
w = wx * wy;
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// for tX + 1; tY px
nw = nwx * wy;
tBuffer[tIndex + 3] += sR * nw;
tBuffer[tIndex + 4] += sG * nw;
tBuffer[tIndex + 5] += sB * nw;
// for tX ; tY + 1 px
nw = wx * nwy;
tBuffer[tIndex + 3 * tw ] += sR * nw;
tBuffer[tIndex + 3 * tw + 1] += sG * nw;
tBuffer[tIndex + 3 * tw + 2] += sB * nw;
// for tX + 1 ; tY +1 px
nw = nwx * nwy;
tBuffer[tIndex + 3 * tw + 3] += sR * nw;
tBuffer[tIndex + 3 * tw + 4] += sG * nw;
tBuffer[tIndex + 3 * tw + 5] += sB * nw;
}
} // end for sx
} // end for sy
// create result canvas
var resCV = document.createElement('canvas');
resCV.width = tw;
resCV.height = th;
var resCtx = resCV.getContext('2d');
var imgRes = resCtx.getImageData(0, 0, tw, th);
var tByteBuffer = imgRes.data;
// convert float32 array into a UInt8Clamped Array
var pxIndex = 0; //
for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) {
tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]);
tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]);
tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]);
tByteBuffer[tIndex + 3] = 255;
}
// writing result to canvas.
resCtx.putImageData(imgRes, 0, 0);
return resCV;
}
It is quite memory greedy, since a float buffer is required to store the intermediate values of the destination image (-> if we count the result canvas, we use 6 times the source image's memory in this algorithm).
It is also quite expensive, since each source pixel is used whatever the destination size, and we have to pay for the getImageData / putImageDate, quite slow also.
But there's no way to be faster than process each source value in this case, and situation is not that bad : For my 740 * 556 image of a wombat, processing takes between 30 and 40 ms.
Fast canvas resample with good quality: http://jsfiddle.net/9g9Nv/442/
Update: version 2.0 (faster, web workers + transferable objects) - https://github.com/viliusle/Hermite-resize
/**
* Hermite resize - fast image resize/resample using Hermite filter. 1 cpu version!
*
* #param {HtmlElement} canvas
* #param {int} width
* #param {int} height
* #param {boolean} resize_canvas if true, canvas will be resized. Optional.
*/
function resample_single(canvas, width, height, resize_canvas) {
var width_source = canvas.width;
var height_source = canvas.height;
width = Math.round(width);
height = Math.round(height);
var ratio_w = width_source / width;
var ratio_h = height_source / height;
var ratio_w_half = Math.ceil(ratio_w / 2);
var ratio_h_half = Math.ceil(ratio_h / 2);
var ctx = canvas.getContext("2d");
var img = ctx.getImageData(0, 0, width_source, height_source);
var img2 = ctx.createImageData(width, height);
var data = img.data;
var data2 = img2.data;
for (var j = 0; j < height; j++) {
for (var i = 0; i < width; i++) {
var x2 = (i + j * width) * 4;
var weight = 0;
var weights = 0;
var weights_alpha = 0;
var gx_r = 0;
var gx_g = 0;
var gx_b = 0;
var gx_a = 0;
var center_y = (j + 0.5) * ratio_h;
var yy_start = Math.floor(j * ratio_h);
var yy_stop = Math.ceil((j + 1) * ratio_h);
for (var yy = yy_start; yy < yy_stop; yy++) {
var dy = Math.abs(center_y - (yy + 0.5)) / ratio_h_half;
var center_x = (i + 0.5) * ratio_w;
var w0 = dy * dy; //pre-calc part of w
var xx_start = Math.floor(i * ratio_w);
var xx_stop = Math.ceil((i + 1) * ratio_w);
for (var xx = xx_start; xx < xx_stop; xx++) {
var dx = Math.abs(center_x - (xx + 0.5)) / ratio_w_half;
var w = Math.sqrt(w0 + dx * dx);
if (w >= 1) {
//pixel too far
continue;
}
//hermite filter
weight = 2 * w * w * w - 3 * w * w + 1;
var pos_x = 4 * (xx + yy * width_source);
//alpha
gx_a += weight * data[pos_x + 3];
weights_alpha += weight;
//colors
if (data[pos_x + 3] < 255)
weight = weight * data[pos_x + 3] / 250;
gx_r += weight * data[pos_x];
gx_g += weight * data[pos_x + 1];
gx_b += weight * data[pos_x + 2];
weights += weight;
}
}
data2[x2] = gx_r / weights;
data2[x2 + 1] = gx_g / weights;
data2[x2 + 2] = gx_b / weights;
data2[x2 + 3] = gx_a / weights_alpha;
}
}
//clear and resize canvas
if (resize_canvas === true) {
canvas.width = width;
canvas.height = height;
} else {
ctx.clearRect(0, 0, width_source, height_source);
}
//draw
ctx.putImageData(img2, 0, 0);
}
Suggestion 1 - extend the process pipe-line
You can use step-down as I describe in the links you refer to but you appear to use them in a wrong way.
Step down is not needed to scale images to ratios above 1:2 (typically, but not limited to). It is where you need to do a drastic down-scaling you need to split it up in two (and rarely, more) steps depending on content of the image (in particular where high-frequencies such as thin lines occur).
Every time you down-sample an image you will loose details and information. You cannot expect the resulting image to be as clear as the original.
If you are then scaling down the images in many steps you will loose a lot of information in total and the result will be poor as you already noticed.
Try with just one extra step, or at tops two.
Convolutions
In case of Photoshop notice that it applies a convolution after the image has been re-sampled, such as sharpen. It's not just bi-cubic interpolation that takes place so in order to fully emulate Photoshop we need to also add the steps Photoshop is doing (with the default setup).
For this example I will use my original answer that you refer to in your post, but I have added a sharpen convolution to it to improve quality as a post process (see demo at bottom).
Here is code for adding sharpen filter (it's based on a generic convolution filter - I put the weight matrix for sharpen inside it as well as a mix factor to adjust the pronunciation of the effect):
Usage:
sharpen(context, width, height, mixFactor);
The mixFactor is a value between [0.0, 1.0] and allow you do downplay the sharpen effect - rule-of-thumb: the less size the less of the effect is needed.
Function (based on this snippet):
function sharpen(ctx, w, h, mix) {
var weights = [0, -1, 0, -1, 5, -1, 0, -1, 0],
katet = Math.round(Math.sqrt(weights.length)),
half = (katet * 0.5) |0,
dstData = ctx.createImageData(w, h),
dstBuff = dstData.data,
srcBuff = ctx.getImageData(0, 0, w, h).data,
y = h;
while(y--) {
x = w;
while(x--) {
var sy = y,
sx = x,
dstOff = (y * w + x) * 4,
r = 0, g = 0, b = 0, a = 0;
for (var cy = 0; cy < katet; cy++) {
for (var cx = 0; cx < katet; cx++) {
var scy = sy + cy - half;
var scx = sx + cx - half;
if (scy >= 0 && scy < h && scx >= 0 && scx < w) {
var srcOff = (scy * w + scx) * 4;
var wt = weights[cy * katet + cx];
r += srcBuff[srcOff] * wt;
g += srcBuff[srcOff + 1] * wt;
b += srcBuff[srcOff + 2] * wt;
a += srcBuff[srcOff + 3] * wt;
}
}
}
dstBuff[dstOff] = r * mix + srcBuff[dstOff] * (1 - mix);
dstBuff[dstOff + 1] = g * mix + srcBuff[dstOff + 1] * (1 - mix);
dstBuff[dstOff + 2] = b * mix + srcBuff[dstOff + 2] * (1 - mix)
dstBuff[dstOff + 3] = srcBuff[dstOff + 3];
}
}
ctx.putImageData(dstData, 0, 0);
}
The result of using this combination will be:
ONLINE DEMO HERE
Depending on how much of the sharpening you want to add to the blend you can get result from default "blurry" to very sharp:
Suggestion 2 - low level algorithm implementation
If you want to get the best result quality-wise you'll need to go low-level and consider to implement for example this brand new algorithm to do this.
See Interpolation-Dependent Image Downsampling (2011) from IEEE.
Here is a link to the paper in full (PDF).
There are no implementations of this algorithm in JavaScript AFAIK of at this time so you're in for a hand-full if you want to throw yourself at this task.
The essence is (excerpts from the paper):
Abstract
An interpolation oriented adaptive down-sampling algorithm is proposed
for low bit-rate image coding in this paper. Given an image, the
proposed algorithm is able to obtain a low resolution image, from
which a high quality image with the same resolution as the input
image can be interpolated. Different from the traditional
down-sampling algorithms, which are independent from the
interpolation process, the proposed down-sampling algorithm hinges the
down-sampling to the interpolation process. Consequently, the
proposed down-sampling algorithm is able to maintain the original
information of the input image to the largest extent. The down-sampled
image is then fed into JPEG. A total variation (TV) based post
processing is then applied to the decompressed low resolution image.
Ultimately, the processed image is interpolated to maintain the
original resolution of the input image. Experimental results verify
that utilizing the downsampled image by the proposed algorithm, an
interpolated image with much higher quality can be achieved. Besides,
the proposed algorithm is able to achieve superior performance than
JPEG for low bit rate image coding.
(see provided link for all details, formulas etc.)
If you wish to use canvas only, the best result will be with multiple downsteps. But that's not good enougth yet. For better quality you need pure js implementation. We just released pica - high speed downscaler with variable quality/speed. In short, it resizes 1280*1024px in ~0.1s, and 5000*3000px image in 1s, with highest quality (lanczos filter with 3 lobes). Pica has demo, where you can play with your images, quality levels, and even try it on mobile devices.
Pica does not have unsharp mask yet, but that will be added very soon. That's much more easy than implement high speed convolution filter for resize.
Why use the canvas to resize images? Modern browsers all use bicubic interpolation — the same process used by Photoshop (if you're doing it right) — and they do it faster than the canvas process. Just specify the image size you want (use only one dimension, height or width, to resize proportionally).
This is supported by most browsers, including later versions of IE. Earlier versions may require browser-specific CSS.
A simple function (using jQuery) to resize an image would be like this:
function resizeImage(img, percentage) {
var coeff = percentage/100,
width = $(img).width(),
height = $(img).height();
return {"width": width*coeff, "height": height*coeff}
}
Then just use the returned value to resize the image in one or both dimensions.
Obviously there are different refinements you could make, but this gets the job done.
Paste the following code into the console of this page and watch what happens to the gravatars:
function resizeImage(img, percentage) {
var coeff = percentage/100,
width = $(img).width(),
height = $(img).height();
return {"width": width*coeff, "height": height*coeff}
}
$('.user-gravatar32 img').each(function(){
var newDimensions = resizeImage( this, 150);
this.style.width = newDimensions.width + "px";
this.style.height = newDimensions.height + "px";
});
Not the right answer for people who really need to resize the image itself, but just to shrink the file size.
I had a problem with "directly from the camera" pictures, that my customers often uploaded in "uncompressed" JPEG.
Not so well known is, that the canvas supports (in most browsers 2017) to change the quality of JPEG
data=canvas.toDataURL('image/jpeg', .85) # [1..0] default 0.92
With this trick I could reduce 4k x 3k pics with >10Mb to 1 or 2Mb, sure it depends on your needs.
look here
I found a solution that doesn't need to access directly the pixel data and loop through it to perform the downsampling. Depending on the size of the image this can be very resource intensive, and it would be better to use the browser's internal algorithms.
The drawImage() function is using a linear-interpolation, nearest-neighbor resampling method. That works well when you are not resizing down more than half the original size.
If you loop to only resize max one half at a time, the results would be quite good, and much faster than accessing pixel data.
This function downsample to half at a time until reaching the desired size:
function resize_image( src, dst, type, quality ) {
var tmp = new Image(),
canvas, context, cW, cH;
type = type || 'image/jpeg';
quality = quality || 0.92;
cW = src.naturalWidth;
cH = src.naturalHeight;
tmp.src = src.src;
tmp.onload = function() {
canvas = document.createElement( 'canvas' );
cW /= 2;
cH /= 2;
if ( cW < src.width ) cW = src.width;
if ( cH < src.height ) cH = src.height;
canvas.width = cW;
canvas.height = cH;
context = canvas.getContext( '2d' );
context.drawImage( tmp, 0, 0, cW, cH );
dst.src = canvas.toDataURL( type, quality );
if ( cW <= src.width || cH <= src.height )
return;
tmp.src = dst.src;
}
}
// The images sent as parameters can be in the DOM or be image objects
resize_image( $( '#original' )[0], $( '#smaller' )[0] );
This is the improved Hermite resize filter that utilises 1 worker so that the window doesn't freeze.
https://github.com/calvintwr/blitz-hermite-resize
const blitz = Blitz.create()
/* Promise */
blitz({
source: DOM Image/DOM Canvas/jQuery/DataURL/File,
width: 400,
height: 600
}).then(output => {
// handle output
})catch(error => {
// handle error
})
/* Await */
let resized = await blitz({...})
/* Old school callback */
const blitz = Blitz.create('callback')
blitz({...}, function(output) {
// run your callback.
})
Here is a reusable Angular service for high quality image / canvas resizing: https://gist.github.com/fisch0920/37bac5e741eaec60e983
The service supports lanczos convolution and step-wise downscaling. The convolution approach is higher quality at the cost of being slower, whereas the step-wise downscaling approach produces reasonably antialiased results and is significantly faster.
Example usage:
angular.module('demo').controller('ExampleCtrl', function (imageService) {
// EXAMPLE USAGE
// NOTE: it's bad practice to access the DOM inside a controller,
// but this is just to show the example usage.
// resize by lanczos-sinc filter
imageService.resize($('#myimg')[0], 256, 256)
.then(function (resizedImage) {
// do something with resized image
})
// resize by stepping down image size in increments of 2x
imageService.resizeStep($('#myimg')[0], 256, 256)
.then(function (resizedImage) {
// do something with resized image
})
})
Maybe man you can try this, which is I always use in my project.In this way you can not only get high quality image ,but any other element on your canvas.
/*
* #parame canvas => canvas object
* #parame rate => the pixel quality
*/
function setCanvasSize(canvas, rate) {
const scaleRate = rate;
canvas.width = window.innerWidth * scaleRate;
canvas.height = window.innerHeight * scaleRate;
canvas.style.width = window.innerWidth + 'px';
canvas.style.height = window.innerHeight + 'px';
canvas.getContext('2d').scale(scaleRate, scaleRate);
}
instead of .85, if we add 1.0. You will get exact answer.
data=canvas.toDataURL('image/jpeg', 1.0);
You can get clear and bright image. Please check
I really try to avoid running through image data, especially on larger images. Thus I came up with a rather simple way to decently reduce image size without any restrictions or limitations using a few extra steps.
This routine goes down to the lowest possible half step before the desired target size. Then it scales it up to twice the target size and then half again. Sounds funny at first, but the results are astoundingly good and go there swiftly.
function resizeCanvas(canvas, newWidth, newHeight) {
let ctx = canvas.getContext('2d');
let buffer = document.createElement('canvas');
buffer.width = ctx.canvas.width;
buffer.height = ctx.canvas.height;
let ctxBuf = buffer.getContext('2d');
let scaleX = newWidth / ctx.canvas.width;
let scaleY = newHeight / ctx.canvas.height;
let scaler = Math.min(scaleX, scaleY);
//see if target scale is less than half...
if (scaler < 0.5) {
//while loop in case target scale is less than quarter...
while (scaler < 0.5) {
ctxBuf.canvas.width = ctxBuf.canvas.width * 0.5;
ctxBuf.canvas.height = ctxBuf.canvas.height * 0.5;
ctxBuf.scale(0.5, 0.5);
ctxBuf.drawImage(canvas, 0, 0);
ctxBuf.setTransform(1, 0, 0, 1, 0, 0);
ctx.canvas.width = ctxBuf.canvas.width;
ctx.canvas.height = ctxBuf.canvas.height;
ctx.drawImage(buffer, 0, 0);
scaleX = newWidth / ctxBuf.canvas.width;
scaleY = newHeight / ctxBuf.canvas.height;
scaler = Math.min(scaleX, scaleY);
}
//only if the scaler is now larger than half, double target scale trick...
if (scaler > 0.5) {
scaleX *= 2.0;
scaleY *= 2.0;
ctxBuf.canvas.width = ctxBuf.canvas.width * scaleX;
ctxBuf.canvas.height = ctxBuf.canvas.height * scaleY;
ctxBuf.scale(scaleX, scaleY);
ctxBuf.drawImage(canvas, 0, 0);
ctxBuf.setTransform(1, 0, 0, 1, 0, 0);
scaleX = 0.5;
scaleY = 0.5;
}
} else
ctxBuf.drawImage(canvas, 0, 0);
//wrapping things up...
ctx.canvas.width = newWidth;
ctx.canvas.height = newHeight;
ctx.scale(scaleX, scaleY);
ctx.drawImage(buffer, 0, 0);
ctx.setTransform(1, 0, 0, 1, 0, 0);
}
context.scale(xScale, yScale)
<canvas id="c"></canvas>
<hr/>
<img id="i" />
<script>
var i = document.getElementById('i');
i.onload = function(){
var width = this.naturalWidth,
height = this.naturalHeight,
canvas = document.getElementById('c'),
ctx = canvas.getContext('2d');
canvas.width = Math.floor(width / 2);
canvas.height = Math.floor(height / 2);
ctx.scale(0.5, 0.5);
ctx.drawImage(this, 0, 0);
ctx.rect(0,0,500,500);
ctx.stroke();
// restore original 1x1 scale
ctx.scale(2, 2);
ctx.rect(0,0,500,500);
ctx.stroke();
};
i.src = 'https://static.md/b70a511140758c63f07b618da5137b5d.png';
</script>
DEMO: Resizing images with JS and HTML Canvas Demo fiddler.
You may find 3 different methods to do this resize, that will help you understand how the code is working and why.
https://jsfiddle.net/1b68eLdr/93089/
Full code of both demo, and TypeScript method that you may want to use in your code, can be found in the GitHub project.
https://github.com/eyalc4/ts-image-resizer
This is the final code:
export class ImageTools {
base64ResizedImage: string = null;
constructor() {
}
ResizeImage(base64image: string, width: number = 1080, height: number = 1080) {
let img = new Image();
img.src = base64image;
img.onload = () => {
// Check if the image require resize at all
if(img.height <= height && img.width <= width) {
this.base64ResizedImage = base64image;
// TODO: Call method to do something with the resize image
}
else {
// Make sure the width and height preserve the original aspect ratio and adjust if needed
if(img.height > img.width) {
width = Math.floor(height * (img.width / img.height));
}
else {
height = Math.floor(width * (img.height / img.width));
}
let resizingCanvas: HTMLCanvasElement = document.createElement('canvas');
let resizingCanvasContext = resizingCanvas.getContext("2d");
// Start with original image size
resizingCanvas.width = img.width;
resizingCanvas.height = img.height;
// Draw the original image on the (temp) resizing canvas
resizingCanvasContext.drawImage(img, 0, 0, resizingCanvas.width, resizingCanvas.height);
let curImageDimensions = {
width: Math.floor(img.width),
height: Math.floor(img.height)
};
let halfImageDimensions = {
width: null,
height: null
};
// Quickly reduce the size by 50% each time in few iterations until the size is less then
// 2x time the target size - the motivation for it, is to reduce the aliasing that would have been
// created with direct reduction of very big image to small image
while (curImageDimensions.width * 0.5 > width) {
// Reduce the resizing canvas by half and refresh the image
halfImageDimensions.width = Math.floor(curImageDimensions.width * 0.5);
halfImageDimensions.height = Math.floor(curImageDimensions.height * 0.5);
resizingCanvasContext.drawImage(resizingCanvas, 0, 0, curImageDimensions.width, curImageDimensions.height,
0, 0, halfImageDimensions.width, halfImageDimensions.height);
curImageDimensions.width = halfImageDimensions.width;
curImageDimensions.height = halfImageDimensions.height;
}
// Now do final resize for the resizingCanvas to meet the dimension requirments
// directly to the output canvas, that will output the final image
let outputCanvas: HTMLCanvasElement = document.createElement('canvas');
let outputCanvasContext = outputCanvas.getContext("2d");
outputCanvas.width = width;
outputCanvas.height = height;
outputCanvasContext.drawImage(resizingCanvas, 0, 0, curImageDimensions.width, curImageDimensions.height,
0, 0, width, height);
// output the canvas pixels as an image. params: format, quality
this.base64ResizedImage = outputCanvas.toDataURL('image/jpeg', 0.85);
// TODO: Call method to do something with the resize image
}
};
}}

Pure Javascript particle repeller from base64 encoded png

I have some js code that i copied from a youtube tutorial and adapted for my own project to fill the header, the code works as intended and it works when the viewport is smaller than around 1200px, however when i put firefox into full screen the animation does not play & the image is being stretched, not retaining its aspect ratio. I do have a 10/15 year old gpu so i'm guessing thats half my issue. The script uses a png image file of 100x100 pixels, which it then converts into particle color values. Can this be optimized or made to run better. it seems that the wider the viewport the longer the animation takes to kick in, until it finally stops & doesn't work. full screen= [2550x1440]...
The original tutorial is here: Pure Javascript Particle Animations & to convert an image to base64 encoding is here: Image to base64.
HTML:
<html>
<body>
<canvas id="CanV"></canvas>
</body>
</html>
CSS:
#Canv{
position:absolute;
top:-1px;left:-2px;
z-index:67;
width:100vw !important;
max-height: 264px !important;
min-height: 245px !important;
filter:blur(2.27px);
}
Javascript:
window.addEventListener("DOMContentLoaded",(e)=>{
const canv = document.getElementById('Canv');
const ctx = canv.getContext('2d');
canv.width = window.innerWidth;
canv.height = window.innerHeight/ 3.85;
let particleArray = [];
let mouse = {
x: null,
y: null,
radius: 74
}
window.addEventListener('mousemove',(e)=>{
mouse.x = event.x + canv.clientLeft/2;
mouse.y = event.y + canv.clientTop/1.2;
});
function drawImage(){
let imageWidth = png.width; //These to values crop if / sum no.
let imageHeight = png.height;
const data = ctx.getImageData(0, 0, imageWidth, imageHeight); //Gets img data for particles
ctx.clearRect(0,0, canv.width, canv.height); // Clears the original img as its now being stored in the variable data.
class Particle {
constructor(x, y, color, size){
this.x = x + canv.width/2 - png.width * 174, //Chngd Ok:74
this.y = y + canv.height/2 - png.height * 32, //Ch<2 Ok:16
this.color = color,
this.size = 2.28, // Particle Size > Changed this value. from 2 i think!.
this.baseX = x + canv.width/1.8 - png.width * 3.1, //Chngd ok:5.1
this.baseY = y + canv.height/1.2 - png.height * 2.8,
this.density = (Math.random() * 14) + 2;
}
draw() {
ctx.beginPath(); // this creates the sort of force field around the mouse pointer.
ctx.arc(this.x, this.y, this.size, 0, Math.PI * 2);
ctx.closePath();
ctx.fill();
}
update() {
ctx.fillStyle = this.color;
// Collision detection
let dx = mouse.x - this.x;
let dy = mouse.y - this.y;
let distance = Math.sqrt(dx * dx + dy * dy);
let forceDirectionX = dx / distance;
let forceDirectionY = dy / distance;
// Max distance, past that the force will be 0
const maxDistance = 144;
let force = (maxDistance - distance) / maxDistance;
if (force < 0) force = 0;
let directionX = (forceDirectionX * force * this.density * 0.6);
let directionY = (forceDirectionY * force * this.density * 8.7); //Ch.this
if (distance < mouse.radius + this.size) {
this.x -= directionX;
this.y -= directionY;
} else {
if (this.x !== this.baseX){
let dx = this.x - this.baseX;
this.x -= dx/54; // Speed Particles return to ori
} if (this.y !== this.baseY){
let dy = this.y - this.baseY;
this.y -= dy/17; // Speed Particles return to ori
}
}
this.draw();
}
}
function init(){
particleArray = [];
for(let y = 0, y2 = data.height; y<y2; y++){
for(let x =0, x2 = data.width; x<x2; x++){
if(data.data[(y * 4 * data.width) + (x*4) + 3] > 128){
let positionX = x + 25;
let positionY = y + 45; // Co-ords on Canv
let color = "rgb(" + data.data[(y * 4 * data.width) + (x * 4)] + "," +
data.data[(y * 4 * data.width) + (x * 4) + 1] + "," +
data.data[(y * 4 * data.width) + (x * 4) + 2] + ")";
particleArray.push(new Particle(positionX * 2, positionY * 2, color));
} /* These number effect png size but its to high */
}
}
}
function animate(){
requestAnimationFrame(animate);
ctx.fillStyle = 'rgba(0,0,0,.07)';
ctx.fillRect(0,0, innerWidth, innerHeight);
for(let i =0; i < particleArray.length; i++){
particleArray[i].update();
}
}
init();
animate();
}
const png = new Image();
png.src = "RemovedBase64StringToBig";
window.addEventListener('load',(e)=>{
console.log('page has loaded');
ctx.drawImage(png, 0, 0);
drawImage();
})
});
have managed to shorten it by about 100 characters by shortening all the variable names > PartArr, ImgWidth, DirX, DirY etc, but apart from minifying it is there any other ways to optimize this? and fix the full screen issue?
I tried to add it to a JSfiddle, So I could link to it here, but I don't think this is allowing the base64 string, its not loading anything anyway. The canvas loads, with the bg just no image or animation.
I've found out what part of the problem is with full screen, the cursor position is actually about 300px to the right of where the actual cursor is, but I still have no idea how to fix this or fix the major lagging performance issues. Guessing its alot to compute even just with 100x100.
One option I can think of to make this perform better would be to move it & its calculations, into its own dedicated web worker & convert the image to Webp but i'm still not very clued up about web workers or how to implement them properly.. Will play around & see what I can put together using All the suggestions in the comments & answers.
I'm adding these links only for future reference, when I come back to this later on:
MDN Canvas Optimizations
Html5Rocks Canvas Performance
Stack Question. Canv ~ Opti
Creating A blob From A Base 64 String in Js
Secondary bonus Question,
is there a maximum file size or max px dimensions,
that can be base64 encoded? only asking this as someone on facebook has recently sent me a question regarding another project with multiple base64 encoded images and I was unsure of the answer..
Shortening your code doesn't help much with performance. I'm using Firefox. To check what's taking your time up the most during browser runs in Firefox, you can read Performance from MDN.
The problem with your solution is your fps is dropping hard. This happens because you are painting each Particle every frame. Imagine how laggy it will be when there are thousands of Particles that you need to paint every frame. This paint call is called from your function Particle.draw (which calls the following: ctx.beginPath, ctx.arc, and ctx.closePath). This function, as said, will be called because of Particle.update for each frame. This is an extremely expensive operation. To improve your fps drastically, you can try to not draw each Particle individually, but rather gather all the Particles' ImageData wholly then placing it in the canvas only once in rAQ (thus only one paint happens). This ImageData is an object that contains the rgba for each pixel on canvas.
In my solution below, I did the following:
For each Particle that is dirty (has been updated), modify the ImageData that is to be put in the canvas
Then, after the whole ImageData has been constructed for one frame, only draw once to the canvas using putImageData. This saves a lot of the time needed to call your function Particle.update to draw each Particle individually.
One other obvious solution is to increase the size of Particles so that there are fewer Particles' pixels that are needed to be processed (to alter ImageData). I've also tweaked the code a little so that the image will always be at least 100px high; you can tweak the maths so that the image will always maintain your aspect ratio and respond to window size.
Here's a working example:
const canvas = document.querySelector('#canvas1')
const ctx = canvas.getContext('2d')
canvas.width = window.innerWidth
canvas.height = window.innerHeight
let canvasWidth = canvas.width
let canvasHeight = canvas.height
let particleArray = []
let imageData = []
// mouse
let mouse = {
x: null,
y: null,
radius: 40
}
window.addEventListener('mousemove', e => {
mouse.x = event.x
mouse.y = event.y
})
function drawImage(width, height) {
let imageWidth = width
let imageHeight = height
const data = ctx.getImageData(0, 0, imageWidth, imageHeight)
class Particle {
constructor(x, y, color, size = 2) {
this.x = Math.round(x + canvas.width / 2 - imageWidth * 2)
this.y = Math.round(y + canvas.height / 2 - imageHeight * 2)
this.color = color
this.size = size
// Records base and previous positions to repaint the canvas to its original background color
this.baseX = Math.round(x + canvas.width / 2 - imageWidth * 2)
this.baseY = Math.round(y + canvas.height / 2 - imageHeight * 2)
this.previousX = null
this.previousY = null
this.density = (Math.random() * 100) + 2
}
stringifyColor() {
return `rgba(${this.color.r}, ${this.color.g}, ${this.color.b}, ${this.color.a}`
}
update() {
ctx.fillStyle = this.stringifyColor()
// collision detection
let dx = mouse.x - this.x
let dy = mouse.y - this.y
let distance = Math.sqrt(dx * dx + dy * dy)
let forceDirectionX = dx / distance
let forceDirectionY = dy / distance
// max distance, past that the force will be 0
const maxDistance = 100
let force = (maxDistance - distance) / maxDistance
if (force < 0) force = 0
let directionX = (forceDirectionX * force * this.density)
let directionY = (forceDirectionY * force * this.density)
this.previousX = this.x
this.previousY = this.y
if (distance < mouse.radius + this.size) {
this.x -= directionX
this.y -= directionY
} else {
// Rounded to one decimal number to as x and y cannot be the same (whole decimal-less integer)
// as baseX and baseY by decreasing using a random number / 20
if (Math.round(this.x) !== this.baseX) {
let dx = this.x - this.baseX
this.x -= dx / 20
}
if (Math.round(this.y) !== this.baseY) {
let dy = this.y - this.baseY
this.y -= dy / 20
}
}
}
}
function createParticle(x, y, size) {
if (data.data[(y * 4 * data.width) + (x * 4) + 3] > 128) {
let positionX = x
let positionY = y
let offset = (y * 4 * data.width) + (x * 4)
let color = {
r: data.data[offset],
g: data.data[offset + 1],
b: data.data[offset + 2],
a: data.data[offset + 3]
}
return new Particle(positionX * 4, positionY * 4, color, size)
}
}
// Instead of drawing each Particle one by one, construct an ImageData that can be
// painted into the canvas at once using putImageData()
function updateImageDataWith(particle) {
let x = particle.x
let y = particle.y
let prevX = particle.previousX
let prevY = particle.previousY
let size = particle.size
if (prevX || prevY) {
let prevMinY = Math.round(prevY - size)
let prevMaxY = Math.round(prevY + size)
let prevMinX = Math.round(prevX - size)
let prevMaxX = Math.round(prevX + size)
for (let y = prevMinY; y < prevMaxY; y++){
for (let x = prevMinX; x < prevMaxX; x++) {
if (y < 0 || y > canvasHeight) continue
else if (x < 0 || x > canvasWidth) continue
else {
let offset = y * 4 * canvasWidth + x * 4
imageData.data[offset] = 255
imageData.data[offset + 1] = 255
imageData.data[offset + 2] = 255
imageData.data[offset + 3] = 255
}
}
}
}
let minY = Math.round(y - size)
let maxY = Math.round(y + size)
let minX = Math.round(x - size)
let maxX = Math.round(x + size)
for (let y = minY; y < maxY; y++){
for (let x = minX; x < maxX; x++) {
if (y < 0 || y > canvasHeight) continue
else if (x < 0 || x > canvasWidth) continue
else {
let offset = y * 4 * canvasWidth + x * 4
imageData.data[offset] = particle.color.r
imageData.data[offset + 1] = particle.color.g
imageData.data[offset + 2] = particle.color.b
imageData.data[offset + 3] = particle.color.a
}
}
}
}
function init() {
particleArray = []
imageData = ctx.createImageData(canvasWidth, canvasHeight)
// Initializing imageData to a blank white "page"
for (let data = 1; data <= canvasWidth * canvasHeight * 4; data++) {
imageData.data[data - 1] = data % 4 === 0 ? 255 : 255
}
const size = 2 // Min size is 2
const step = Math.floor(size / 2)
for (let y = 0, y2 = data.height; y < y2; y += step) {
for (let x = 0, x2 = data.width; x < x2; x += step) {
// If particle's alpha value is too low, don't record it
if (data.data[(y * 4 * data.width) + (x * 4) + 3] > 128) {
let newParticle = createParticle(x, y, size)
particleArray.push(newParticle)
updateImageDataWith(newParticle)
}
}
}
}
function animate() {
requestAnimationFrame(animate)
for (let i = 0; i < particleArray.length; i++) {
let imageDataCanUpdateKey = `${Math.round(particleArray[i].x)}${Math.round(particleArray[i].y)}`
particleArray[i].update()
updateImageDataWith(particleArray[i])
}
ctx.putImageData(imageData, 0, 0)
}
init()
animate()
window.addEventListener('resize', e => {
canvas.width = innerWidth
canvas.height = innerHeight
canvasWidth = canvas.width
canvasHeight = canvas.height
init()
})
}
const png = new Image()
png.src = " "
window.addEventListener('load', e => {
// Ensuring height of image is always 100px
let pngWidth = png.width
let pngHeight = png.height
let divisor = pngHeight / 100
let finalWidth = pngWidth / divisor
let finalHeight = pngHeight / divisor
ctx.drawImage(png, 0, 0, finalWidth, finalHeight)
drawImage(finalWidth, finalHeight)
})
#canvas1 {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
<canvas id="canvas1"></canvas>
UPDATE 2: I have managed to optimize further. Now it can render FullHD image (1920x1080) without downgrading quality (on my PC it runs at about 20fps).
Take a look this code on JSFiddle (you can also tweak values).
Thanks also goes to #Richard (check out his answer) for idea to put all data in ImageData and make a single draw call. Code on JSFiddle is combination of his and mine optimizations (code below is my old code).
EDIT: Updated JSFiddle link, optimized more by spreading work of stationary particles across multiple frames (for given settings it improves performance for about 10%).
Regarding optimization, you won't achieve much by minifying code (in this case) because code that eats up CPU is runtime intensive (executes each frame). Minification is good for optimizing loading, not runtime execution.
Most of time is spent on drawing, and after some investigation I have found few performance optimizations but these are not enough to make big difference (eg. ctx.closePath() can be omitted and this saves some milliseconds).
What you can do is to either reduce resolution of image or skip some pixels in image in order to reduce work.
Additionally you could spread work across multiple frames to improve frame rate (but keep in mind if you spread it on more than few frames you might start seeing flickering).
Fullscreen issue can be solved by simply re-initializing everything on resize event.
Below is code with mentioned optimizations and fullscreen fix. Sample image is 375x375 pixels.
UPDATE: I played a little with code and I managed to improve further performance by optimizing calls (things I mentioned below code snippet). Code is updated with these changes.
var canv
var ctx
//performance critical parameters
const pixelStep = 2 //default 1; increase for images of higher resolution
const maxParticlesToProcessInOneFrame = 20000
//additional performance oriented paramteres
// Max distance, past that the force will be 0
const maxDistance = 144
const mouseRadius = 74
//customization parameters
const ctxFillStyle = 'rgba(0,0,0,.07)'
const speedOfActivatingParticle = 1
const speedOfRestoringParticle = 0.1
const png = new Image();
const mouse = {
x: null,
y: null
}
window.addEventListener('mousemove', (e) => {
mouse.x = event.x + canv.clientLeft;
mouse.y = event.y + canv.clientTop;
})
class Particle {
constructor(x, y, size) {
this.x = x
this.y = y
this.size = pixelStep
this.baseX = x
this.baseY = y
this.density = (Math.random() * 14) + 2
}
draw() {
//ctx.beginPath(); // this creates the sort of force field around the mouse pointer.
//ctx.arc(this.x, this.y, this.size, 0, Math.PI * 2);
ctx.rect(this.x, this.y, this.size * 2, this.size * 2)
//ctx.closePath();
}
update() {
// Collision detection
let dx = mouse.x - this.x;
let dy = mouse.y - this.y;
let distance = Math.sqrt(dx * dx + dy * dy);
if (distance < mouseRadius + this.size) {
let forceDirectionX = dx / distance;
let forceDirectionY = dy / distance;
let force = (maxDistance - distance) / maxDistance;
if (force < 0)
force = 0;
const forceTimesDensity = force * this.density * speedOfActivatingParticle
let directionX = (forceDirectionX * forceTimesDensity);
let directionY = (forceDirectionY * forceTimesDensity); //Ch.this
this.x -= directionX;
this.y -= directionY;
} else {
if (this.x !== this.baseX) {
let dx = this.x - this.baseX;
this.x -= dx * speedOfRestoringParticle; // Speed Particles return to ori
}
if (this.y !== this.baseY) {
let dy = this.y - this.baseY;
this.y -= dy * speedOfRestoringParticle; // Speed Particles return to ori
}
}
this.draw();
}
}
window.addEventListener('resize', initializeCanvas)
window.addEventListener("load", initializeCanvas, {
once: true
})
let animationFrame = null
function initializeCanvas(e) {
cancelAnimationFrame(animationFrame)
canv = document.getElementById('Canv');
ctx = canv.getContext('2d');
canv.width = window.innerWidth;
canv.height = window.innerHeight;
let particles = {}
function drawImage() {
let imageWidth = png.width; //These to values crop if / sum no.
let imageHeight = png.height;
const data = ctx.getImageData(0, 0, imageWidth, imageHeight); //Gets img data for particles
ctx.clearRect(0, 0, canv.width, canv.height); // Clears the original img as its now being stored in the variable data.
function init() {
particles = {}
for (let y = 0, y2 = data.height; y < y2; y += pixelStep) {
for (let x = 0, x2 = data.width; x < x2; x += pixelStep) {
if (data.data[(y * 4 * data.width) + (x * 4) + 3] > 128) {
let positionX = x
let positionY = y
let color = "rgb(" + data.data[(y * 4 * data.width) + (x * 4)] + "," +
data.data[(y * 4 * data.width) + (x * 4) + 1] + "," +
data.data[(y * 4 * data.width) + (x * 4) + 2] + ")";
let particlesArray = particles[color]
if (!particlesArray)
particlesArray = particles[color] = []
particlesArray.push(new Particle(positionX * 2, positionY * 2))
} /* These number effect png size but its to high */
}
}
}
let particlesProcessed = 0
let animateGenerator = animate()
function* animate() {
particlesProcessed = 0
ctx.fillStyle = ctxFillStyle;
ctx.fillRect(0, 0, innerWidth, innerHeight);
let colors = Object.keys(particles)
for (let j = 0; j < colors.length; j++) {
let color = colors[j]
ctx.fillStyle = color
let particlesArray = particles[color]
ctx.beginPath()
for (let i = 0; i < particlesArray.length; i++) {
particlesArray[i].update()
if (++particlesProcessed > maxParticlesToProcessInOneFrame) {
particlesProcessed = 0
ctx.fill()
yield
ctx.beginPath()
}
}
ctx.fill()
}
}
init();
function animateFrame() {
animationFrame = requestAnimationFrame(() => {
if (animateGenerator.next().done) {
animateGenerator = animate()
}
animateFrame()
})
}
animateFrame()
}
console.log('page has loaded');
ctx.drawImage(png, 0, 0, png.width, png.height);
drawImage();
}
png.src = "";
body {
margin: 0;
padding: 0;
}
#Canv {
width: 100vw;
height: 100vh;
filter: blur(1.5px);
}
<canvas id="Canv"></canvas>
If you still need to optimize, you could do some optimization regarding ctx.beginPath(), ctx.fill() and ctx.rect() calls. For example, try to combine sibling pixels (pixels that are next to each other) and render them all in one call. Furthermore, you could merge similar colors in single color, but downside is that image will loose quality (depending on how much colors are merged).
Also (if this is option) you might want to set fixed canvas size rather than dynamically sized.
Disclosure: On my PC given code works nicely, but on others it might still have performance issues. For that reason try to play with pixelStep and maxParticlesToProcessInOneFrame variable values.

How to draw herringbone pattern on html canvas

I Have to draw Herringbone pattern on canvas and fill with image
some one please help me I am new to canvas 2d drawing.
I need to draw mixed tiles with cross pattern (Herringbone)
var canvas = this.__canvas = new fabric.Canvas('canvas');
var canvas_objects = canvas._objects;
// create a rectangle with a fill and a different color stroke
var left = 150;
var top = 150;
var x=20;
var y=40;
var rect = new fabric.Rect({
left: left,
top: top,
width: x,
height: y,
angle:45,
fill: 'rgba(255,127,39,1)',
stroke: 'rgba(34,177,76,1)',
strokeWidth:0,
originX:'right',
originY:'top',
centeredRotation: false
});
canvas.add(rect);
for(var i=0;i<15;i++){
var rectangle = fabric.util.object.clone(getLastobject());
if(i%2==0){
rectangle.left = rectangle.oCoords.tr.x;
rectangle.top = rectangle.oCoords.tr.y;
rectangle.originX='right';
rectangle.originY='top';
rectangle.angle =-45;
}else{
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.left = rectangle.oCoords.tl.x;
rectangle.top = rectangle.oCoords.tl.y;
fabric.log('rectangle: ', rectangle.toJSON());
rectangle.originX='left';
rectangle.originY='top';
rectangle.angle =45;
}
//rectangle.angle -90;
canvas.add(rectangle);
}
fabric.log('rectangle: ', canvas.toJSON());
canvas.renderAll();
function getLastobject(){
var last = null;
if(canvas_objects.length !== 0){
last = canvas_objects[canvas_objects.length -1]; //Get last object
}
return last;
}
How to draw this pattern in canvas using svg or 2d,3d method. If any third party library that also Ok for me.
I don't know where to start and how to draw this complex pattern.
some one please help me to draw this pattern with rectangle fill with dynamic color on canvas.
Here is a sample of the output I need: (herringbone pattern)
I tried something similar using fabric.js library here is my JSFiddle
Trippy disco flooring
To get the pattern you need to draw rectangles one horizontal tiled one space left or right for each row down and the same for the vertical rectangle.
The rectangle has an aspect of width 2 time height.
Drawing the pattern is simple.
Rotating is easy as well the harder part is finding where to draw the tiles for the rotation.
To do that I create a inverse matrix of the rotation (it reverses a rotation). I then apply that rotation to the 4 corners of the canvas 0,0, width,0 width,height and 0,height this gives me 4 points in the rotated space that are at the edges of the canvas.
As I draw the tiles from left to right top to bottom I find the min corners for the top left, and the max corners for the bottom right, expand it out a little so I dont miss any pixels and draw the tiles with a transformation set the the rotation.
As I could not workout what angle you wanted it at the function will draw it at any angle. On is animated, the other is at 60deg clockwise.
Warning demo contains flashing content.
Update The flashing was way to out there, so have made a few changes, now colours are a more pleasing blend and have fixed absolute positions, and have tied the tile origin to the mouse position, clicking the mouse button will cycle through some sizes as well.
const ctx = canvas.getContext("2d");
const colours = []
for(let i = 0; i < 1; i += 1/80){
colours.push(`hsl(${Math.floor(i * 360)},${Math.floor((Math.sin(i * Math.PI *4)+1) * 50)}%,${Math.floor(Math.sin(i * Math.PI *8)* 25 + 50)}%)`)
}
const sizes = [0.04,0.08,0.1,0.2];
var currentSize = 0;
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 2;
endX = Math.floor(endX / size) + 2;
startY = Math.floor(startY / size) - 2;
endY = Math.floor(endY / size) + 2;
// draw the pattern
ctx.lineWidth = size * 0.1;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
var colourIndex = 0;
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
if((x + y) % 4 === 0){
colourIndex = Math.floor(Math.abs(Math.sin(x)*size + Math.sin(y) * 20));
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[(colourIndex++)% colours.length];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
// Animate it all
var update = true; // flag to indecate something needs updating
function mainLoop(time){
// if window size has changed update canvas to new size
if(canvas.width !== innerWidth || canvas.height !== innerHeight || update){
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width, canvas.height) * sizes[currentSize % sizes.length];
update = false;
}
if(mouse.buttonRaw !== 0){
mouse.buttonRaw = 0;
currentSize += 1;
update = true;
}
// draw the patter
drawPattern(size,mouse,time/2000);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
mouse = (function () {
function preventDefault(e) { e.preventDefault() }
var m; // alias for mouse
var mouse = {
x : 0, y : 0, // mouse position
buttonRaw : 0,
over : false, // true if mouse over the element
buttonOnMasks : [0b1, 0b10, 0b100], // mouse button on masks
buttonOffMasks : [0b110, 0b101, 0b011], // mouse button off masks
bounds : null,
eventNames : "mousemove,mousedown,mouseup,mouseout,mouseover".split(","),
event(e) {
var t = e.type;
m.bounds = m.element.getBoundingClientRect();
m.x = e.pageX - m.bounds.left - scrollX;
m.y = e.pageY - m.bounds.top - scrollY;
if (t === "mousedown") { m.buttonRaw |= m.buttonOnMasks[e.which - 1] }
else if (t === "mouseup") { m.buttonRaw &= m.buttonOffMasks[e.which - 1] }
else if (t === "mouseout") { m.over = false }
else if (t === "mouseover") { m.over = true }
e.preventDefault();
},
start(element) {
if (m.element !== undefined) { m.remove() }
m.element = element === undefined ? document : element;
m.eventNames.forEach(name => document.addEventListener(name, mouse.event) );
document.addEventListener("contextmenu", preventDefault, false);
},
}
m = mouse;
return mouse;
})();
mouse.start(canvas);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
Un-animated version at 60Deg
const ctx = canvas.getContext("2d");
const colours = ["red","green","yellow","orange","blue","cyan","magenta"]
const origin = {x : canvas.width / 2, y : canvas.height / 2};
var size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
function drawPattern(size,origin,ang){
const xAx = Math.cos(ang); // define the direction of xAxis
const xAy = Math.sin(ang);
ctx.setTransform(1,0,0,1,0,0);
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.setTransform(xAx,xAy,-xAy,xAx,origin.x,origin.y);
function getExtent(xAx,xAy,origin){
const im = [1,0,0,1]; // inverse matrix
const dot = xAx * xAx + xAy * xAy;
im[0] = xAx / dot;
im[1] = -xAy / dot;
im[2] = xAy / dot;
im[3] = xAx / dot;
const toWorld = (x,y) => {
var point = {};
var xx = x - origin.x;
var yy = y - origin.y;
point.x = xx * im[0] + yy * im[2];
point.y = xx * im[1] + yy * im[3];
return point;
}
return [
toWorld(0,0),
toWorld(canvas.width,0),
toWorld(canvas.width,canvas.height),
toWorld(0,canvas.height),
]
}
const corners = getExtent(xAx,xAy,origin);
var startX = Math.min(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var endX = Math.max(corners[0].x,corners[1].x,corners[2].x,corners[3].x);
var startY = Math.min(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
var endY = Math.max(corners[0].y,corners[1].y,corners[2].y,corners[3].y);
startX = Math.floor(startX / size) - 4;
endX = Math.floor(endX / size) + 4;
startY = Math.floor(startY / size) - 4;
endY = Math.floor(endY / size) + 4;
// draw the pattern
ctx.lineWidth = 5;
ctx.lineJoin = "round";
ctx.strokeStyle = "black";
for(var y = startY; y <endY; y+=1){
for(var x = startX; x <endX; x+=1){
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
if((x + y) % 4 === 0){
ctx.fillRect(x * size,y * size,size * 2,size);
ctx.strokeRect(x * size,y * size,size * 2,size);
x += 2;
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fillRect(x * size,y * size, size, size * 2);
ctx.strokeRect(x * size,y * size, size, size * 2);
x += 1;
}
}
}
}
canvas.width = innerWidth;
canvas.height = innerHeight
origin.x = canvas.width / 2;
origin.y = canvas.height / 2;
size = Math.min(canvas.width * 0.2, canvas.height * 0.2);
drawPattern(size,origin,Math.PI / 3);
canvas {
position : absolute;
top : 0px;
left : 0px;
}
<canvas id=canvas></canvas>
The best way to approach this is to examine the pattern and analyse its symmetry and how it repeats.
You can look at this several ways. For example, you could rotate the patter 45 degrees so that the tiles are plain orthogonal rectangles. But let's just look at it how it is. I am going to assume you are happy with it with 45deg tiles.
Like the tiles themselves, it turns out the pattern has a 2:1 ratio. If we repeat this pattern horizontally and vertically, we can fill the canvas with the completed pattern.
We can see there are five tiles that overlap with our pattern block. However we don't need to draw them all when we draw each pattern block. We can take advantage of the fact that blocks are repeated, and we can leave the drawing of some tiles to later rows and columns.
Let's assume we are drawing the pattern blocks from left to right and top to bottom. Which tiles do we need to draw, at a minimum, to ensure this pattern block gets completely drawn (taking into account adjacent pattern blocks)?
Since we will be starting at the top left (and moving right and downwards), we'll need to draw tile 2. That's because that tile won't get drawn by either the block below us, or the block to the right of us. The same applies to tile 3.
It turns out those two are all we'll need to draw for each pattern block. Tile 1 and 4 will be drawn when the pattern block below us draws their tile 2 and 3 respectively. Tile 5 will be drawn when the pattern block to the south-east of us draws their tile 1.
We just need to remember that we may need to draw an extra column on the right-hand side, and at the bottom, to ensure those end-of-row and end-of-column pattern blocks get completely drawn.
The last thing to work out is how big our pattern blocks are.
Let's call the short side of the tile a and the long side b. We know that b = 2 * a. And we can work out, using Pythagoras Theorem, that the height of the pattern block will be:
h = sqrt(a^2 + a^2)
= sqrt(2 * a^2)
= sqrt(2) * a
The width of the pattern block we can see will be w = 2 * h.
Now that we've worked out how to draw the pattern, let's implement our algorithm.
const a = 60;
const b = 120;
const h = 50 * Math.sqrt(2);
const w = h * 2;
const h2 = h / 2; // How far tile 1 sticks out to the left of the pattern block
// Set of colours for the tiles
const colours = ["red","cornsilk","black","limegreen","deepskyblue",
"mediumorchid", "lightgrey", "grey"]
const canvas = document.getElementById("herringbone");
const ctx = canvas.getContext("2d");
// Set a universal stroke colour and width
ctx.strokeStyle = "black";
ctx.lineWidth = 4;
// Loop through the pattern block rows
for (var y=0; y < (canvas.height + h); y+=h)
{
// Loop through the pattern block columns
for (var x=0; x < (canvas.width + w); x+=w)
{
// Draw tile "2"
// I'm just going to draw a path for simplicity, rather than
// worrying about drawing a rectangle with rotation and translates
ctx.beginPath();
ctx.moveTo(x - h2, y - h2);
ctx.lineTo(x, y - h);
ctx.lineTo(x + h, y);
ctx.lineTo(x + h2, y + h2);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
// Draw tile "3"
ctx.beginPath();
ctx.moveTo(x + h2, y + h2);
ctx.lineTo(x + w - h2, y - h2);
ctx.lineTo(x + w, y);
ctx.lineTo(x + h, y + h);
ctx.closePath();
ctx.fillStyle = colours[Math.floor(Math.random() * colours.length)];
ctx.fill();
ctx.stroke();
}
}
<canvas id="herringbone" width="500" height="400"></canvas>

Stretch image to fit polygon html5 canvas

I have a square image like this:
I am trying to stretch this image into a polygon like this:
So far I have been able to create a polygon on the canvas as the above image using the following javascript:
function drawCanvas() {
var c2 = document.getElementById('myCanvas6').getContext('2d');
var img = document.getElementById("scream");
c2.fillStyle = '#000';
c2.beginPath();
c2.moveTo(20, 20);
c2.lineTo(320, 50);
c2.lineTo(320, 170);
c2.lineTo(20, 200);
//c2.drawImage(img, 150, 10, img.width, img.height);
c2.closePath();
c2.fill();
}
I tried using drawImage() method, but it does not stretch the points A, B, C, D to the new positions. Is there anyway this can be achieved?
The 2D canvas is called 2D for a very good reason. You can not transform a square such that any of its side converge (are not parallel) hence 2D
But where there is a need there is always a way..
You can do it by cutting the image into slices and then draw each slice slightly smaller than the last.
We humans don't like to see an image distort when it converges, so you need to add the distortion we expect, perspective. The further away the object the smaller the distance between points appears to the eye.
So the function below draws an image with the top and bottom edges converging..
It is not true 3D but it does make the image appear as distorted as jus converging the top and bottom without decreasing the y step. The animation introduced a bit of an optical illusion. the second render shortens the image to make it appear a little less fake.
See the code on how to use the function.
/** CreateImage.js begin **/
// creates a blank image with 2d context
var createImage=function(w,h){var i=document.createElement("canvas");i.width=w;i.height=h;i.ctx=i.getContext("2d");return i;}
/** CreateImage.js end **/
var can = createImage(512,512);
document.body.appendChild(can);
var ctx = can.ctx;
const textToDisplay = "Perspective"
const textSize = 80;
ctx.font = textSize+"px arial";
var w = ctx.measureText(textToDisplay).width + 8;
var text = createImage(w + 64,textSize + 32);
text.ctx.fillStyle = "#08F";
text.ctx.strokeStyle = "black";
text.ctx.lineWidth = 16;
text.ctx.fillRect(0,0,text.width,text.height);
text.ctx.strokeRect(0,0,text.width,text.height);
text.ctx.font = textSize+"px arial";
text.ctx.fillStyle = "#F80";
text.ctx.strokeStyle = "Black";
text.ctx.lineWidth = 4;
text.ctx.strokeText(textToDisplay,38,textSize + 8);
text.ctx.fillText(textToDisplay,38,textSize + 8);
// Not quite 3D
// ctx is the context to draw to
// image is the image to draw
// x1,x2 left and right edges of the image
// zz1,zz2 top offset for left and right
// image top edge has a slops from zz1 to zz2
// yy if the position to draw top. This is where the top would be if z = 0
function drawPerspective(ctx, image, x1, zz1, x2, zz2, yy){
var x, w, h, h2,slop, topLeft, botLeft, zDistR, zDistL, lines, ty;
w = image.width; // image size
h = image.height;
h2 = h /2; // half height
slop = (zz2 - zz1) / (x2 - x1); // Slope of top edge
z1 = h2 - zz1; // Distance (z) to first line
z2 = (z1 / (h2 - zz2)) * z1 - z1; // distance (z) between first and last line
if(z2 === 0){ // if no differance in z then is square to camera
topLeft = - x1 * slop + zz1; // get scan line top left edge
ctx.drawImage(image,0, 0, w, h,x1, topLeft + yy ,x2-x1, h - topLeft * 2) // render to desination
return;
}
// render each display line getting all pixels that will be on that line
for (x = x1; x < x2; x++) { // for each line horizontal line
topLeft = (x - x1) * slop + zz1; // get scan line top left edge
botLeft = ((x + 1) - x1) * slop + zz1; // get scan line bottom left edge
zDistL = (z1 / (h2 - topLeft)) * z1; // get Z distance to Left of this line
zDistR = (z1 / (h2 - botLeft)) * z1; // get Z distance to right of this line
ty = ((zDistL - z1) / z2) * w; // get y bitmap coord
lines = ((zDistR - z1) / z2) * w - ty;// get number of lines to copy
ctx.drawImage(image,
ty % w, 0, lines, h, // get the source location of pixel
x, topLeft + yy,1 , h - topLeft * 2 // render to desination
);
}
}
var animTick = 0;
var animRate = 0.01;
var pos = 0;
var short = 0;
function update1(){
animTick += animRate;
pos = Math.sin(animTick) * 20 + 20;
short = Math.cos((pos / 40) * Math.PI) * text.width * 0.12 - text.width * 0.12;
ctx.clearRect(0,0,can.width,can.height)
drawPerspective(ctx,text,0,0,text.width,pos,20)
drawPerspective(ctx,text,0,0,text.width+short,pos,textSize + 32 + 30)
requestAnimationFrame(update1);
}
update1();
I think this is a good solution for you: http://jsfiddle.net/fQk4h/
Here is the magic:
for (i = 0; i < w; i++) {
dy = (leftTop * (w - i)) / w;
dh = (leftBot * (w - i) + h * i) / w;
ctx.drawImage(tmpCtx.canvas,
i, 0, 1, h,
i, dy, 1, dh);
}
ctx.restore();

HTML5 Canvas Resize (Downscale) Image High Quality?

I use html5 canvas elements to resize images im my browser. It turns out that the quality is very low. I found this: Disable Interpolation when Scaling a <canvas> but it does not help to increase the quality.
Below is my css and js code as well as the image scalled with Photoshop and scaled in the canvas API.
What do I have to do to get optimal quality when scaling an image in the browser?
Note: I want to scale down a large image to a small one, modify color in a canvas and send the result from the canvas to the server.
CSS:
canvas, img {
image-rendering: optimizeQuality;
image-rendering: -moz-crisp-edges;
image-rendering: -webkit-optimize-contrast;
image-rendering: optimize-contrast;
-ms-interpolation-mode: nearest-neighbor;
}
JS:
var $img = $('<img>');
var $originalCanvas = $('<canvas>');
$img.load(function() {
var originalContext = $originalCanvas[0].getContext('2d');
originalContext.imageSmoothingEnabled = false;
originalContext.webkitImageSmoothingEnabled = false;
originalContext.mozImageSmoothingEnabled = false;
originalContext.drawImage(this, 0, 0, 379, 500);
});
The image resized with photoshop:
The image resized on canvas:
Edit:
I tried to make downscaling in more than one steps as proposed in:
Resizing an image in an HTML5 canvas and
Html5 canvas drawImage: how to apply antialiasing
This is the function I have used:
function resizeCanvasImage(img, canvas, maxWidth, maxHeight) {
var imgWidth = img.width,
imgHeight = img.height;
var ratio = 1, ratio1 = 1, ratio2 = 1;
ratio1 = maxWidth / imgWidth;
ratio2 = maxHeight / imgHeight;
// Use the smallest ratio that the image best fit into the maxWidth x maxHeight box.
if (ratio1 < ratio2) {
ratio = ratio1;
}
else {
ratio = ratio2;
}
var canvasContext = canvas.getContext("2d");
var canvasCopy = document.createElement("canvas");
var copyContext = canvasCopy.getContext("2d");
var canvasCopy2 = document.createElement("canvas");
var copyContext2 = canvasCopy2.getContext("2d");
canvasCopy.width = imgWidth;
canvasCopy.height = imgHeight;
copyContext.drawImage(img, 0, 0);
// init
canvasCopy2.width = imgWidth;
canvasCopy2.height = imgHeight;
copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);
var rounds = 2;
var roundRatio = ratio * rounds;
for (var i = 1; i <= rounds; i++) {
console.log("Step: "+i);
// tmp
canvasCopy.width = imgWidth * roundRatio / i;
canvasCopy.height = imgHeight * roundRatio / i;
copyContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvasCopy.width, canvasCopy.height);
// copy back
canvasCopy2.width = imgWidth * roundRatio / i;
canvasCopy2.height = imgHeight * roundRatio / i;
copyContext2.drawImage(canvasCopy, 0, 0, canvasCopy.width, canvasCopy.height, 0, 0, canvasCopy2.width, canvasCopy2.height);
} // end for
// copy back to canvas
canvas.width = imgWidth * roundRatio / rounds;
canvas.height = imgHeight * roundRatio / rounds;
canvasContext.drawImage(canvasCopy2, 0, 0, canvasCopy2.width, canvasCopy2.height, 0, 0, canvas.width, canvas.height);
}
Here is the result if I use a 2 step down sizing:
Here is the result if I use a 3 step down sizing:
Here is the result if I use a 4 step down sizing:
Here is the result if I use a 20 step down sizing:
Note: It turns out that from 1 step to 2 steps there is a large improvement in image quality but the more steps you add to the process the more fuzzy the image becomes.
Is there a way to solve the problem that the image gets more fuzzy the more steps you add?
Edit 2013-10-04: I tried the algorithm of GameAlchemist. Here is the result compared to Photoshop.
PhotoShop Image:
GameAlchemist's Algorithm:
Since your problem is to downscale your image, there is no point in talking about interpolation -which is about creating pixel-. The issue here is downsampling.
To downsample an image, we need to turn each square of p * p pixels in the original image into a single pixel in the destination image.
For performances reasons Browsers do a very simple downsampling : to build the smaller image, they will just pick ONE pixel in the source and use its value for the destination. which 'forgets' some details and adds noise.
Yet there's an exception to that : since the 2X image downsampling is very simple to compute (average 4 pixels to make one) and is used for retina/HiDPI pixels, this case is handled properly -the Browser does make use of 4 pixels to make one-.
BUT... if you use several time a 2X downsampling, you'll face the issue that the successive rounding errors will add too much noise.
What's worse, you won't always resize by a power of two, and resizing to the nearest power + a last resizing is very noisy.
What you seek is a pixel-perfect downsampling, that is : a re-sampling of the image that will take all input pixels into account -whatever the scale-.
To do that we must compute, for each input pixel, its contribution to one, two, or four destination pixels depending wether the scaled projection of the input pixels is right inside a destination pixels, overlaps an X border, an Y border, or both.
( A scheme would be nice here, but i don't have one. )
Here's an example of canvas scale vs my pixel perfect scale on a 1/3 scale of a zombat.
Notice that the picture might get scaled in your Browser, and is .jpegized by S.O..
Yet we see that there's much less noise especially in the grass behind the wombat, and the branches on its right. The noise in the fur makes it more contrasted, but it looks like he's got white hairs -unlike source picture-.
Right image is less catchy but definitively nicer.
Here's the code to do the pixel perfect downscaling :
fiddle result :
http://jsfiddle.net/gamealchemist/r6aVp/embedded/result/
fiddle itself : http://jsfiddle.net/gamealchemist/r6aVp/
// scales the image by (float) scale < 1
// returns a canvas containing the scaled image.
function downScaleImage(img, scale) {
var imgCV = document.createElement('canvas');
imgCV.width = img.width;
imgCV.height = img.height;
var imgCtx = imgCV.getContext('2d');
imgCtx.drawImage(img, 0, 0);
return downScaleCanvas(imgCV, scale);
}
// scales the canvas by (float) scale < 1
// returns a new canvas containing the scaled image.
function downScaleCanvas(cv, scale) {
if (!(scale < 1) || !(scale > 0)) throw ('scale must be a positive number <1 ');
var sqScale = scale * scale; // square scale = area of source pixel within target
var sw = cv.width; // source image width
var sh = cv.height; // source image height
var tw = Math.floor(sw * scale); // target image width
var th = Math.floor(sh * scale); // target image height
var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array
var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array
var tX = 0, tY = 0; // rounded tx, ty
var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y
// weight is weight of current source point within target.
// next weight is weight of current source point within next target's point.
var crossX = false; // does scaled px cross its current px right border ?
var crossY = false; // does scaled px cross its current px bottom border ?
var sBuffer = cv.getContext('2d').
getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba
var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb
var sR = 0, sG = 0, sB = 0; // source's current point r,g,b
/* untested !
var sA = 0; //source alpha */
for (sy = 0; sy < sh; sy++) {
ty = sy * scale; // y src position within target
tY = 0 | ty; // rounded : target pixel's y
yIndex = 3 * tY * tw; // line index within target array
crossY = (tY != (0 | ty + scale));
if (crossY) { // if pixel is crossing botton target pixel
wy = (tY + 1 - ty); // weight of point within target pixel
nwy = (ty + scale - tY - 1); // ... within y+1 target pixel
}
for (sx = 0; sx < sw; sx++, sIndex += 4) {
tx = sx * scale; // x src position within target
tX = 0 |  tx; // rounded : target pixel's x
tIndex = yIndex + tX * 3; // target pixel index within target array
crossX = (tX != (0 | tx + scale));
if (crossX) { // if pixel is crossing target pixel's right
wx = (tX + 1 - tx); // weight of point within target pixel
nwx = (tx + scale - tX - 1); // ... within x+1 target pixel
}
sR = sBuffer[sIndex ]; // retrieving r,g,b for curr src px.
sG = sBuffer[sIndex + 1];
sB = sBuffer[sIndex + 2];
/* !! untested : handling alpha !!
sA = sBuffer[sIndex + 3];
if (!sA) continue;
if (sA != 0xFF) {
sR = (sR * sA) >> 8; // or use /256 instead ??
sG = (sG * sA) >> 8;
sB = (sB * sA) >> 8;
}
*/
if (!crossX && !crossY) { // pixel does not cross
// just add components weighted by squared scale.
tBuffer[tIndex ] += sR * sqScale;
tBuffer[tIndex + 1] += sG * sqScale;
tBuffer[tIndex + 2] += sB * sqScale;
} else if (crossX && !crossY) { // cross on X only
w = wx * scale;
// add weighted component for current px
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// add weighted component for next (tX+1) px
nw = nwx * scale
tBuffer[tIndex + 3] += sR * nw;
tBuffer[tIndex + 4] += sG * nw;
tBuffer[tIndex + 5] += sB * nw;
} else if (crossY && !crossX) { // cross on Y only
w = wy * scale;
// add weighted component for current px
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// add weighted component for next (tY+1) px
nw = nwy * scale
tBuffer[tIndex + 3 * tw ] += sR * nw;
tBuffer[tIndex + 3 * tw + 1] += sG * nw;
tBuffer[tIndex + 3 * tw + 2] += sB * nw;
} else { // crosses both x and y : four target points involved
// add weighted component for current px
w = wx * wy;
tBuffer[tIndex ] += sR * w;
tBuffer[tIndex + 1] += sG * w;
tBuffer[tIndex + 2] += sB * w;
// for tX + 1; tY px
nw = nwx * wy;
tBuffer[tIndex + 3] += sR * nw;
tBuffer[tIndex + 4] += sG * nw;
tBuffer[tIndex + 5] += sB * nw;
// for tX ; tY + 1 px
nw = wx * nwy;
tBuffer[tIndex + 3 * tw ] += sR * nw;
tBuffer[tIndex + 3 * tw + 1] += sG * nw;
tBuffer[tIndex + 3 * tw + 2] += sB * nw;
// for tX + 1 ; tY +1 px
nw = nwx * nwy;
tBuffer[tIndex + 3 * tw + 3] += sR * nw;
tBuffer[tIndex + 3 * tw + 4] += sG * nw;
tBuffer[tIndex + 3 * tw + 5] += sB * nw;
}
} // end for sx
} // end for sy
// create result canvas
var resCV = document.createElement('canvas');
resCV.width = tw;
resCV.height = th;
var resCtx = resCV.getContext('2d');
var imgRes = resCtx.getImageData(0, 0, tw, th);
var tByteBuffer = imgRes.data;
// convert float32 array into a UInt8Clamped Array
var pxIndex = 0; //
for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) {
tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]);
tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]);
tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]);
tByteBuffer[tIndex + 3] = 255;
}
// writing result to canvas.
resCtx.putImageData(imgRes, 0, 0);
return resCV;
}
It is quite memory greedy, since a float buffer is required to store the intermediate values of the destination image (-> if we count the result canvas, we use 6 times the source image's memory in this algorithm).
It is also quite expensive, since each source pixel is used whatever the destination size, and we have to pay for the getImageData / putImageDate, quite slow also.
But there's no way to be faster than process each source value in this case, and situation is not that bad : For my 740 * 556 image of a wombat, processing takes between 30 and 40 ms.
Fast canvas resample with good quality: http://jsfiddle.net/9g9Nv/442/
Update: version 2.0 (faster, web workers + transferable objects) - https://github.com/viliusle/Hermite-resize
/**
* Hermite resize - fast image resize/resample using Hermite filter. 1 cpu version!
*
* #param {HtmlElement} canvas
* #param {int} width
* #param {int} height
* #param {boolean} resize_canvas if true, canvas will be resized. Optional.
*/
function resample_single(canvas, width, height, resize_canvas) {
var width_source = canvas.width;
var height_source = canvas.height;
width = Math.round(width);
height = Math.round(height);
var ratio_w = width_source / width;
var ratio_h = height_source / height;
var ratio_w_half = Math.ceil(ratio_w / 2);
var ratio_h_half = Math.ceil(ratio_h / 2);
var ctx = canvas.getContext("2d");
var img = ctx.getImageData(0, 0, width_source, height_source);
var img2 = ctx.createImageData(width, height);
var data = img.data;
var data2 = img2.data;
for (var j = 0; j < height; j++) {
for (var i = 0; i < width; i++) {
var x2 = (i + j * width) * 4;
var weight = 0;
var weights = 0;
var weights_alpha = 0;
var gx_r = 0;
var gx_g = 0;
var gx_b = 0;
var gx_a = 0;
var center_y = (j + 0.5) * ratio_h;
var yy_start = Math.floor(j * ratio_h);
var yy_stop = Math.ceil((j + 1) * ratio_h);
for (var yy = yy_start; yy < yy_stop; yy++) {
var dy = Math.abs(center_y - (yy + 0.5)) / ratio_h_half;
var center_x = (i + 0.5) * ratio_w;
var w0 = dy * dy; //pre-calc part of w
var xx_start = Math.floor(i * ratio_w);
var xx_stop = Math.ceil((i + 1) * ratio_w);
for (var xx = xx_start; xx < xx_stop; xx++) {
var dx = Math.abs(center_x - (xx + 0.5)) / ratio_w_half;
var w = Math.sqrt(w0 + dx * dx);
if (w >= 1) {
//pixel too far
continue;
}
//hermite filter
weight = 2 * w * w * w - 3 * w * w + 1;
var pos_x = 4 * (xx + yy * width_source);
//alpha
gx_a += weight * data[pos_x + 3];
weights_alpha += weight;
//colors
if (data[pos_x + 3] < 255)
weight = weight * data[pos_x + 3] / 250;
gx_r += weight * data[pos_x];
gx_g += weight * data[pos_x + 1];
gx_b += weight * data[pos_x + 2];
weights += weight;
}
}
data2[x2] = gx_r / weights;
data2[x2 + 1] = gx_g / weights;
data2[x2 + 2] = gx_b / weights;
data2[x2 + 3] = gx_a / weights_alpha;
}
}
//clear and resize canvas
if (resize_canvas === true) {
canvas.width = width;
canvas.height = height;
} else {
ctx.clearRect(0, 0, width_source, height_source);
}
//draw
ctx.putImageData(img2, 0, 0);
}
Suggestion 1 - extend the process pipe-line
You can use step-down as I describe in the links you refer to but you appear to use them in a wrong way.
Step down is not needed to scale images to ratios above 1:2 (typically, but not limited to). It is where you need to do a drastic down-scaling you need to split it up in two (and rarely, more) steps depending on content of the image (in particular where high-frequencies such as thin lines occur).
Every time you down-sample an image you will loose details and information. You cannot expect the resulting image to be as clear as the original.
If you are then scaling down the images in many steps you will loose a lot of information in total and the result will be poor as you already noticed.
Try with just one extra step, or at tops two.
Convolutions
In case of Photoshop notice that it applies a convolution after the image has been re-sampled, such as sharpen. It's not just bi-cubic interpolation that takes place so in order to fully emulate Photoshop we need to also add the steps Photoshop is doing (with the default setup).
For this example I will use my original answer that you refer to in your post, but I have added a sharpen convolution to it to improve quality as a post process (see demo at bottom).
Here is code for adding sharpen filter (it's based on a generic convolution filter - I put the weight matrix for sharpen inside it as well as a mix factor to adjust the pronunciation of the effect):
Usage:
sharpen(context, width, height, mixFactor);
The mixFactor is a value between [0.0, 1.0] and allow you do downplay the sharpen effect - rule-of-thumb: the less size the less of the effect is needed.
Function (based on this snippet):
function sharpen(ctx, w, h, mix) {
var weights = [0, -1, 0, -1, 5, -1, 0, -1, 0],
katet = Math.round(Math.sqrt(weights.length)),
half = (katet * 0.5) |0,
dstData = ctx.createImageData(w, h),
dstBuff = dstData.data,
srcBuff = ctx.getImageData(0, 0, w, h).data,
y = h;
while(y--) {
x = w;
while(x--) {
var sy = y,
sx = x,
dstOff = (y * w + x) * 4,
r = 0, g = 0, b = 0, a = 0;
for (var cy = 0; cy < katet; cy++) {
for (var cx = 0; cx < katet; cx++) {
var scy = sy + cy - half;
var scx = sx + cx - half;
if (scy >= 0 && scy < h && scx >= 0 && scx < w) {
var srcOff = (scy * w + scx) * 4;
var wt = weights[cy * katet + cx];
r += srcBuff[srcOff] * wt;
g += srcBuff[srcOff + 1] * wt;
b += srcBuff[srcOff + 2] * wt;
a += srcBuff[srcOff + 3] * wt;
}
}
}
dstBuff[dstOff] = r * mix + srcBuff[dstOff] * (1 - mix);
dstBuff[dstOff + 1] = g * mix + srcBuff[dstOff + 1] * (1 - mix);
dstBuff[dstOff + 2] = b * mix + srcBuff[dstOff + 2] * (1 - mix)
dstBuff[dstOff + 3] = srcBuff[dstOff + 3];
}
}
ctx.putImageData(dstData, 0, 0);
}
The result of using this combination will be:
ONLINE DEMO HERE
Depending on how much of the sharpening you want to add to the blend you can get result from default "blurry" to very sharp:
Suggestion 2 - low level algorithm implementation
If you want to get the best result quality-wise you'll need to go low-level and consider to implement for example this brand new algorithm to do this.
See Interpolation-Dependent Image Downsampling (2011) from IEEE.
Here is a link to the paper in full (PDF).
There are no implementations of this algorithm in JavaScript AFAIK of at this time so you're in for a hand-full if you want to throw yourself at this task.
The essence is (excerpts from the paper):
Abstract
An interpolation oriented adaptive down-sampling algorithm is proposed
for low bit-rate image coding in this paper. Given an image, the
proposed algorithm is able to obtain a low resolution image, from
which a high quality image with the same resolution as the input
image can be interpolated. Different from the traditional
down-sampling algorithms, which are independent from the
interpolation process, the proposed down-sampling algorithm hinges the
down-sampling to the interpolation process. Consequently, the
proposed down-sampling algorithm is able to maintain the original
information of the input image to the largest extent. The down-sampled
image is then fed into JPEG. A total variation (TV) based post
processing is then applied to the decompressed low resolution image.
Ultimately, the processed image is interpolated to maintain the
original resolution of the input image. Experimental results verify
that utilizing the downsampled image by the proposed algorithm, an
interpolated image with much higher quality can be achieved. Besides,
the proposed algorithm is able to achieve superior performance than
JPEG for low bit rate image coding.
(see provided link for all details, formulas etc.)
If you wish to use canvas only, the best result will be with multiple downsteps. But that's not good enougth yet. For better quality you need pure js implementation. We just released pica - high speed downscaler with variable quality/speed. In short, it resizes 1280*1024px in ~0.1s, and 5000*3000px image in 1s, with highest quality (lanczos filter with 3 lobes). Pica has demo, where you can play with your images, quality levels, and even try it on mobile devices.
Pica does not have unsharp mask yet, but that will be added very soon. That's much more easy than implement high speed convolution filter for resize.
Why use the canvas to resize images? Modern browsers all use bicubic interpolation — the same process used by Photoshop (if you're doing it right) — and they do it faster than the canvas process. Just specify the image size you want (use only one dimension, height or width, to resize proportionally).
This is supported by most browsers, including later versions of IE. Earlier versions may require browser-specific CSS.
A simple function (using jQuery) to resize an image would be like this:
function resizeImage(img, percentage) {
var coeff = percentage/100,
width = $(img).width(),
height = $(img).height();
return {"width": width*coeff, "height": height*coeff}
}
Then just use the returned value to resize the image in one or both dimensions.
Obviously there are different refinements you could make, but this gets the job done.
Paste the following code into the console of this page and watch what happens to the gravatars:
function resizeImage(img, percentage) {
var coeff = percentage/100,
width = $(img).width(),
height = $(img).height();
return {"width": width*coeff, "height": height*coeff}
}
$('.user-gravatar32 img').each(function(){
var newDimensions = resizeImage( this, 150);
this.style.width = newDimensions.width + "px";
this.style.height = newDimensions.height + "px";
});
Not the right answer for people who really need to resize the image itself, but just to shrink the file size.
I had a problem with "directly from the camera" pictures, that my customers often uploaded in "uncompressed" JPEG.
Not so well known is, that the canvas supports (in most browsers 2017) to change the quality of JPEG
data=canvas.toDataURL('image/jpeg', .85) # [1..0] default 0.92
With this trick I could reduce 4k x 3k pics with >10Mb to 1 or 2Mb, sure it depends on your needs.
look here
I found a solution that doesn't need to access directly the pixel data and loop through it to perform the downsampling. Depending on the size of the image this can be very resource intensive, and it would be better to use the browser's internal algorithms.
The drawImage() function is using a linear-interpolation, nearest-neighbor resampling method. That works well when you are not resizing down more than half the original size.
If you loop to only resize max one half at a time, the results would be quite good, and much faster than accessing pixel data.
This function downsample to half at a time until reaching the desired size:
function resize_image( src, dst, type, quality ) {
var tmp = new Image(),
canvas, context, cW, cH;
type = type || 'image/jpeg';
quality = quality || 0.92;
cW = src.naturalWidth;
cH = src.naturalHeight;
tmp.src = src.src;
tmp.onload = function() {
canvas = document.createElement( 'canvas' );
cW /= 2;
cH /= 2;
if ( cW < src.width ) cW = src.width;
if ( cH < src.height ) cH = src.height;
canvas.width = cW;
canvas.height = cH;
context = canvas.getContext( '2d' );
context.drawImage( tmp, 0, 0, cW, cH );
dst.src = canvas.toDataURL( type, quality );
if ( cW <= src.width || cH <= src.height )
return;
tmp.src = dst.src;
}
}
// The images sent as parameters can be in the DOM or be image objects
resize_image( $( '#original' )[0], $( '#smaller' )[0] );
This is the improved Hermite resize filter that utilises 1 worker so that the window doesn't freeze.
https://github.com/calvintwr/blitz-hermite-resize
const blitz = Blitz.create()
/* Promise */
blitz({
source: DOM Image/DOM Canvas/jQuery/DataURL/File,
width: 400,
height: 600
}).then(output => {
// handle output
})catch(error => {
// handle error
})
/* Await */
let resized = await blitz({...})
/* Old school callback */
const blitz = Blitz.create('callback')
blitz({...}, function(output) {
// run your callback.
})
Here is a reusable Angular service for high quality image / canvas resizing: https://gist.github.com/fisch0920/37bac5e741eaec60e983
The service supports lanczos convolution and step-wise downscaling. The convolution approach is higher quality at the cost of being slower, whereas the step-wise downscaling approach produces reasonably antialiased results and is significantly faster.
Example usage:
angular.module('demo').controller('ExampleCtrl', function (imageService) {
// EXAMPLE USAGE
// NOTE: it's bad practice to access the DOM inside a controller,
// but this is just to show the example usage.
// resize by lanczos-sinc filter
imageService.resize($('#myimg')[0], 256, 256)
.then(function (resizedImage) {
// do something with resized image
})
// resize by stepping down image size in increments of 2x
imageService.resizeStep($('#myimg')[0], 256, 256)
.then(function (resizedImage) {
// do something with resized image
})
})
Maybe man you can try this, which is I always use in my project.In this way you can not only get high quality image ,but any other element on your canvas.
/*
* #parame canvas => canvas object
* #parame rate => the pixel quality
*/
function setCanvasSize(canvas, rate) {
const scaleRate = rate;
canvas.width = window.innerWidth * scaleRate;
canvas.height = window.innerHeight * scaleRate;
canvas.style.width = window.innerWidth + 'px';
canvas.style.height = window.innerHeight + 'px';
canvas.getContext('2d').scale(scaleRate, scaleRate);
}
instead of .85, if we add 1.0. You will get exact answer.
data=canvas.toDataURL('image/jpeg', 1.0);
You can get clear and bright image. Please check
I really try to avoid running through image data, especially on larger images. Thus I came up with a rather simple way to decently reduce image size without any restrictions or limitations using a few extra steps.
This routine goes down to the lowest possible half step before the desired target size. Then it scales it up to twice the target size and then half again. Sounds funny at first, but the results are astoundingly good and go there swiftly.
function resizeCanvas(canvas, newWidth, newHeight) {
let ctx = canvas.getContext('2d');
let buffer = document.createElement('canvas');
buffer.width = ctx.canvas.width;
buffer.height = ctx.canvas.height;
let ctxBuf = buffer.getContext('2d');
let scaleX = newWidth / ctx.canvas.width;
let scaleY = newHeight / ctx.canvas.height;
let scaler = Math.min(scaleX, scaleY);
//see if target scale is less than half...
if (scaler < 0.5) {
//while loop in case target scale is less than quarter...
while (scaler < 0.5) {
ctxBuf.canvas.width = ctxBuf.canvas.width * 0.5;
ctxBuf.canvas.height = ctxBuf.canvas.height * 0.5;
ctxBuf.scale(0.5, 0.5);
ctxBuf.drawImage(canvas, 0, 0);
ctxBuf.setTransform(1, 0, 0, 1, 0, 0);
ctx.canvas.width = ctxBuf.canvas.width;
ctx.canvas.height = ctxBuf.canvas.height;
ctx.drawImage(buffer, 0, 0);
scaleX = newWidth / ctxBuf.canvas.width;
scaleY = newHeight / ctxBuf.canvas.height;
scaler = Math.min(scaleX, scaleY);
}
//only if the scaler is now larger than half, double target scale trick...
if (scaler > 0.5) {
scaleX *= 2.0;
scaleY *= 2.0;
ctxBuf.canvas.width = ctxBuf.canvas.width * scaleX;
ctxBuf.canvas.height = ctxBuf.canvas.height * scaleY;
ctxBuf.scale(scaleX, scaleY);
ctxBuf.drawImage(canvas, 0, 0);
ctxBuf.setTransform(1, 0, 0, 1, 0, 0);
scaleX = 0.5;
scaleY = 0.5;
}
} else
ctxBuf.drawImage(canvas, 0, 0);
//wrapping things up...
ctx.canvas.width = newWidth;
ctx.canvas.height = newHeight;
ctx.scale(scaleX, scaleY);
ctx.drawImage(buffer, 0, 0);
ctx.setTransform(1, 0, 0, 1, 0, 0);
}
context.scale(xScale, yScale)
<canvas id="c"></canvas>
<hr/>
<img id="i" />
<script>
var i = document.getElementById('i');
i.onload = function(){
var width = this.naturalWidth,
height = this.naturalHeight,
canvas = document.getElementById('c'),
ctx = canvas.getContext('2d');
canvas.width = Math.floor(width / 2);
canvas.height = Math.floor(height / 2);
ctx.scale(0.5, 0.5);
ctx.drawImage(this, 0, 0);
ctx.rect(0,0,500,500);
ctx.stroke();
// restore original 1x1 scale
ctx.scale(2, 2);
ctx.rect(0,0,500,500);
ctx.stroke();
};
i.src = 'https://static.md/b70a511140758c63f07b618da5137b5d.png';
</script>
DEMO: Resizing images with JS and HTML Canvas Demo fiddler.
You may find 3 different methods to do this resize, that will help you understand how the code is working and why.
https://jsfiddle.net/1b68eLdr/93089/
Full code of both demo, and TypeScript method that you may want to use in your code, can be found in the GitHub project.
https://github.com/eyalc4/ts-image-resizer
This is the final code:
export class ImageTools {
base64ResizedImage: string = null;
constructor() {
}
ResizeImage(base64image: string, width: number = 1080, height: number = 1080) {
let img = new Image();
img.src = base64image;
img.onload = () => {
// Check if the image require resize at all
if(img.height <= height && img.width <= width) {
this.base64ResizedImage = base64image;
// TODO: Call method to do something with the resize image
}
else {
// Make sure the width and height preserve the original aspect ratio and adjust if needed
if(img.height > img.width) {
width = Math.floor(height * (img.width / img.height));
}
else {
height = Math.floor(width * (img.height / img.width));
}
let resizingCanvas: HTMLCanvasElement = document.createElement('canvas');
let resizingCanvasContext = resizingCanvas.getContext("2d");
// Start with original image size
resizingCanvas.width = img.width;
resizingCanvas.height = img.height;
// Draw the original image on the (temp) resizing canvas
resizingCanvasContext.drawImage(img, 0, 0, resizingCanvas.width, resizingCanvas.height);
let curImageDimensions = {
width: Math.floor(img.width),
height: Math.floor(img.height)
};
let halfImageDimensions = {
width: null,
height: null
};
// Quickly reduce the size by 50% each time in few iterations until the size is less then
// 2x time the target size - the motivation for it, is to reduce the aliasing that would have been
// created with direct reduction of very big image to small image
while (curImageDimensions.width * 0.5 > width) {
// Reduce the resizing canvas by half and refresh the image
halfImageDimensions.width = Math.floor(curImageDimensions.width * 0.5);
halfImageDimensions.height = Math.floor(curImageDimensions.height * 0.5);
resizingCanvasContext.drawImage(resizingCanvas, 0, 0, curImageDimensions.width, curImageDimensions.height,
0, 0, halfImageDimensions.width, halfImageDimensions.height);
curImageDimensions.width = halfImageDimensions.width;
curImageDimensions.height = halfImageDimensions.height;
}
// Now do final resize for the resizingCanvas to meet the dimension requirments
// directly to the output canvas, that will output the final image
let outputCanvas: HTMLCanvasElement = document.createElement('canvas');
let outputCanvasContext = outputCanvas.getContext("2d");
outputCanvas.width = width;
outputCanvas.height = height;
outputCanvasContext.drawImage(resizingCanvas, 0, 0, curImageDimensions.width, curImageDimensions.height,
0, 0, width, height);
// output the canvas pixels as an image. params: format, quality
this.base64ResizedImage = outputCanvas.toDataURL('image/jpeg', 0.85);
// TODO: Call method to do something with the resize image
}
};
}}

Categories

Resources