My question is dead simple.
I just casually discovered that once you have defined a property with this. into an object, you don't need to prepend this. anymore when you want to call them.
So this. is really meant to be used ad definition time, like var?
I found it my self shortly after, i was referencing the window object with this. since i called my object without using new, so like it was a function.
One extra question, maybe for comments. Inside the main object, if i create a new object, and use this during the object definition, this this what will be referring to?
No, unless the context of this is a global object, such as window. Take the following example:
function Foo(bar) {
this.data = bar;
console.log(this.data); // OK
console.log(data); // ReferenceError
}
In this example, you'll get a ReferenceError: data is not defined on the first console.log(data), unless, data is a global variable. To access the instance's public member, you have to use this.data.
References:
Understanding JavaScript’s this keyword
The this keyword
There are all sorts of circumstances where you MUST use this in order to reference the right data.
These two implementations do very different things:
Array.prototype.truncate(newLen) {
// sets the length property on the current Array object
this.length = newLen;
}
Array.prototype.truncate(newLen) {
// sets a global variable named length
length = newLen;
}
var arr = [1,2,3,4,5,6,7];
arr.truncate(2);
You MUST use this in order to control what happens if you want to modify the current object. Your assumption that you can leave it off and it will still modify the current object's properties is not correct. If you leave it off, you are modifying global variables, not member properties.
So this. is really meant to be used ad definition time, like var?
No, the point of this is to be the current scope of execution. You can (and will) run into weird errors if you don't use this. For example, imagine you are an object with a property val and then on the prototype of that object you have
App.obj = function(){
this.val = 'initial';
}
obj.prototype.myMethod = function(val) {
// how would you assign argument val to object val?
}
also note that your reasoning breaks down with methods.
obj.prototype.meth2 = function(){
myMethod(); // fails where this.myMethod() would work.
}
See http://jsfiddle.net/BRsqH/:
function f(){
this.public='hello!';
var hidden='TOP SECRET!';
}
var instance=new f();
alert('Public data: '+instance.public+ /* gives "hello!" */
'\nHidden data: '+instance.hidden /* gives undefined */
);
Variables created with var are hidden and cannot be viewed nor modified outside the function which created them.
But variables created with this are public, so you can access them outside the function.
I think I got it.
I defined my object as function My_Object(){...} and then called it with MyObject(). This way the My_Object was treated as a function, not an object and therefore this == window.
So in the end I was attaching properties and methods to window instead of My_Object! That's way there were available without prepending .this.
The right way to initialize My_Object as an object is to call it like this new My_Object, isn't right?
Related
I thought I had a reasonable understanding of the this object in JavaScript. When dealing with objects, callbacks, and both events and handlers, I haven't had a problem with it since time immemorial. Now, however, all has changed.
I've fallen head over heels in love with JavaScript. Pure JS, that is, not jQuery, prototype.js, dojo... So naturally, I've taken to using closures. In some cases, though, this is catching me off guard here. Take this snippet for one:
function anyFunc(par)
{
//console.log(par);
console.log(this);
}
function makeClosure(func)
{
return function(par)
{
return func(par);
}
}
var close = makeClosure(anyFunc);
close('Foo');
var objWithClosure = {cls:makeClosure(anyFunc),prop:'foobar'};
objWithClosure.cls(objWithClosure.prop);
var scndObj = {prop:'Foobar2'};
scndObj.cls = makeClosure;
scndObj.cls = scndObj.cls(anyFunc);
scndObj.cls(scndObj.prop);
In all three cases, this logs as the window object. It's an easy fix, of course:
function makeClosure(func)
{
return function(par)
{
return func.call(this,par);
}
}
This fix works, I put it here to avoid people answering this, without explaining what I need to know: why is this behaving the way it does here?
ensures the caller is effectively the object that the closure belongs to. What I fail to understand is this:
Sure enough, this points to the window object in the first case, but in other cases, it shouldn't. I tried logging this in the makeClosure function just before returning, and it did log the object itself, not the window object. But when the actual closure is used, this is back to pointing to the window object. Why?
The only thing I can think of is that, by passing the anyFunc function as an argument, I'm actually passing window.anyFunc. So I tried this quick fix:
function makeClosure(func)
{
var theFunc = func;
return function(par)
{
theFunc(par);
}
}
With the expected results, this now points to the objects, but again: Why? I have a few idea's (theFunc is a reference to the function in the local scope [this > private: theFunc]?), but I'm sure there are people here with a lot more know-how when it comes to JS, so I was hoping to get some more explanation or links to articles worth reading from them...
Thanks
Update
Here's a fiddle, may be I left something out, but here this logs all sorts of things ;)
Edit/Update 2
The case that confuses me is here.
Final Edit
Ok, This is getting a rather messy post. So to clarify: What I was expecting was a behaviour similar to this:
function makeClosure()
{
function fromThisFunc()
{
console.log(this);
}
return fromThisFunc;
}
var windowContext = makeClosure();
windowContext();
var objectContext = {cls:makeClosure()};
objectContext.cls();
What caught me, was that the function anyFunc wasn't declared within the correct scope, and therefore, this pointed to the window object. I found this out by reading an ancient scroll I found somewhere on the web.
But something a little more complicated has happened because the function object now referred to by globalVar was created with a [[scope]] property referring to a scope chain containing the Activation/Variable object belonging to the execution context in which it was created (and the global object). Now the Activation/Variable object cannot be garbage collected either as the execution of the function object referred to by globalVar will need to add the whole scope chain from its [[scope]] property to the scope of the execution context created for each call to it.
So what I needed to do, was simplify rather then complicate things:
function fromThisFunc()
{
console.log(this);
}
function makeClosure(funcRef)
{
//some code here
return funcRef;
}
That should work, right?
PS: I'll except Alnitak's answer, but special thanks goes to Felix Kling for all the patience and info.
As soon as you call:
return func(par);
You're creating a new scope (with its own this) and in this case because you haven't specified an object, this === window usually or undefined in strict mode. The called function does not inherit whatever this was in the calling scope.
Ways to set a value for this are:
myobj.func(par); // this === myobj
or
func.call(myobj, ...) // this === myobj
There are also:
apply
bind
arrow functions, where this is set to the same value as the outer execution context (also see MDN:Arrow functions )
The value of this depends only on whether you call the function as a method or as a function.
If you call it as a method, this will be the object that the method belongs to:
obj.myFunction();
If you call it as a function, this will be the window object:
myFunction();
Note that even if you are in a method that belongs to an object, you still have to call other methods in the object using the method syntax, otherwise they will be called as functions:
this.myOtherFunction();
If you put a method reference in a variable, you will detach it from the object, and it will be called as a function:
var f = obj.myFunction;
f();
The call and apply methods are used to call a function as a method even if it's not a method in the object (or if it's a method in a different object):
myFunction.call(obj);
I've done a lot of searching and some playing around, and I'm pretty sure the answer to this question is no, but I'm hoping a JavaScript expert might have a trick up his sleeve that can do this.
A JavaScript function can be referenced by multiple properties, even on completely different objects, so there's no such thing as the object or property that holds the function. But any time you actually call a function, you must have done so via a single object (at the very least, the window object for global function calls) and property on that object.
(A function can also be called via a function-local variable, but we can consider the function-local variable to be a property of the activation object of the scope, so that case is not an exception to this rule.)
My question is, is there a way to get that property name that was used to call the function, from inside the function body? I don't want to pass in the property name as an argument, or closure around a variable in an enclosing scope, or store the name as a separate property on the object that holds the function reference and have the function access that name property on the this object.
Here's an example of what I want to do:
var callName1 = function() { var callName = /* some magic */; alert(callName); };
var obj1 = {'callName2':callName1, 'callName3':callName1 };
var obj2 = {'callName4':callName1, 'callName5':callName1 };
callName1(); // should alert 'callName1'
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'
From my searching, it looks like the closest you can get to the above is arguments.callee.name, but that won't work, because that only returns the name that was fixed to the function object when it was defined, and only if it was defined as a named function (which the function in my example is not).
I also considered that maybe you could iterate over all properties of the this object and test for equality with arguments.callee to find the property whose value is a reference to the function itself, but that won't work either (in the general case), because there could be multiple references to the function in the object's own (or inherited) property set, as in my example. (Also, that seems like it would be kind of an inefficient solution.)
Can this be done?
Short answer:
No, you cannot get "the property name" used to call your function.
There may be no name at all, or multiple names across different scopes, so "the property name" is pretty ill defined.
arguments.callee is deprecated and should not be used.
There exists no solution that does not use arguments or closure.
Long answer:
As thefourtheye commented, you should rethink what you are trying to do and ask that instead in a new question. But there are some common misconceptions, so I will try to explain why you cannot get the "simple property name".
The reason is because it is not simple.
Before we go ahead, let us clarify something. Activation Objects are not objects at all.
The ECMAScript 5.1 specification calls them Environment Records (10.2.1), but a more common term is Scope chain.
In a browser the global scope is (often) the window object, but all other scopes are not objects.
There may be an object that you use to call a function, and when you call a function you must be in some scope.
With few exceptions, scopes are not objects, and objects are not scopes.
Then, there are many names.
When you call a function, you need to reference it, such as through an object property. This reference may have a name.
Scope chain has declarations, which always have a name.
A Function (the real function, not reference) may also have a function name - your arguments.callee.name - which is fixed at declaration.
Not only are they different names, they are not (always) the "the property name" you are seeking.
var obj = { prop : function f(){} }, func = obj.prop;
// "obj" and "func" are declarations.
// Function name is "f" - use this name instead of arguments.callee
// Property name is "prop"
func(); // Reference name is "func"
obj.prop(); // Reference names are "obj" and "prop"
// But they are the same function!
// P.S. "this" in f is undefined (strict mode) or window (non-strict)
So, a function reference may comes from a binding (e.g. function declaration), an Object (arguments.callee), or a variable.
They are all References (8.7). And reference does have a name (so to speak).
The catch is, a function reference does not always come from an object or the scope chain, and its name is not always defined.
For example a common closure technique:
(function(i){ /* what is my name? */ })(i)
Even if the reference does have a name, a function call (11.2.3) does not pass the reference or its name to the function in any way.
Which keeps the JavaScript engine sane. Consider this example:
eval("(new Function('return function a(){}'))()")() // Calls function 'a'.
The final function call refers the eval function, which refers the result of a new global scope (in strict mode, anyway), which refers a function call statement, which refers a group, which refers an anonymous Function object, and which contains code that expresses and returns a function called 'a'.
If you want to get the "property name" from within a, which one should it get? "eval"? "Function"? "anonymous"? "a"? All of them?
Before you answer, consider complications such as function access across iframes, which has different globals as well as cross origin restriction, or interaction with native functions (Function.prototype.bind for example), and you will see how it quickly becomes hell.
This is also why arguments.caller, __caller__, and other similar techniques are now all deprecated.
The "property name" of a function is even more ill defined than the caller, almost unrealistic.
At least caller is always an execution context (not necessary a function).
So, not knowing what your real problem is, the best bet of getting the "property name" is using closure.
there is no reflection, but you can use function behavior to make adding your own fairly painless, and without resorting to try/catch, arguments.callee, Function.caller, or other strongly frowned-upon behavior, just wasteful looping:
// returning a function from inside a function always creates a new, unique function we can self-identify later:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//the one ugly about this is the extra "()" at the end:
var obj1 = {'callName2':callName(), 'callName3':callName() };
var obj2 = {'callName4':callName(), 'callName5':callName() };
//test out the tattle-tale function:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
if you REALLY want to make it look like an assignment and avoid the execution parens each time in the object literal, you can do this hacky routine to create an invoking alias:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//make an alias to execute a function each time it's used :
Object.defineProperty(window, 'callNamer', {get: function(){ return callName() }});
//use the alias to assign a tattle-tale function (look ma, no parens!):
var obj1 = {'callName2': callNamer, 'callName3': callNamer };
var obj2 = {'callName4': callNamer, 'callName5': callNamer };
//try it out:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
all that aside, you can probably accomplish what you need to do without all the looping required by this approach.
Advantages:
works on globals or object properties
requires no repetitive key/name passing
uses no proprietary or deprecated features
does not use arguments or closure
surrounding code executes faster (optimized) than
a try/catch version
is not confused by repeated uses
can handle new and deleted (renamed) properties
Caveats:
doesn't work on private vars, which have no property name
partially loops owner object each access
slower computation than a memorized property or code-time repetition
won't survive call/bind/apply
wont survive a setTimeout without bind() or a wrapper function
cannot easily be cloned
honestly, i think all the ways of accomplishing this task are "less than ideal", to be polite, and i would recommend you just bite the coding bullet and pass extra key names, or automate that by using a method to add properties to a blank object instead of coding it all in an object literal.
Yes.
Sort Of.
It depends on the browser. (Chrome=OK, Firefox=Nope)
You can use a factory to create the function, and a call stack parsing hack that will probably get me arrested.
This solution works in my version of Chrome on Windows 7, but the approach could be adapted to other browsers (if they support stack and show the property name in the call stack like Chrome does). I would not recommend doing this in production code as it is a pretty brittle hack; instead improve the architecture of your program so that you do not need to rely on knowing the name of the calling property. You didn't post details about your problem domain so this is just a fun little thought experiment; to wit:
JSFiddle demo: http://jsfiddle.net/tv9m36fr/
Runnable snippet: (scroll down and click Run code snippet)
function getCallerName(ex) {
// parse the call stack to find name of caller; assumes called from object property
// todo: replace with regex (left as exercise for the reader)
// this works in chrome on win7. other browsers may format differently(?) but not tested.
// easy enough to extend this concept to be browser-specific if rules are known.
// this is only for educational purposes; I would not do this in production code.
var stack = ex.stack.toString();
var idx = stack.indexOf('\n');
var lines = ex.stack.substring(idx + 1);
var objectSentinel = 'Object.';
idx = lines.indexOf(objectSentinel);
var line = lines.substring(idx + objectSentinel.length);
idx = line.indexOf(' ');
var callerName = line.substring(0, idx);
return callerName;
}
var Factory = {
getFunction: function () {
return function () {
var callName = "";
try {
throw up; // you don't *have* to throw to get stack trace, but it's more fun!
} catch (ex) {
callName = getCallerName(ex);
}
alert(callName);
};
}
}
var obj1 = {
'callName2': Factory.getFunction(),
'callName3': Factory.getFunction()
};
var obj2 = {
'callName4': Factory.getFunction(),
'callName5': Factory.getFunction()
};
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'
I'm having trouble with a JS prototype object I'm working on. What I'm trying to do is define a class-level variable as an object literal, then refer back to one of the class's prototype methods to set a property of the class-level variable, but I'm not getting anywhere. Here's what I am trying to do, in a simplified example:
var foo = function(args)
{
this.name = 'bar';
}
foo.stuff = { barbaz: this.foobarbaz(2) };
foo.prototype.foobarbaz(int)
{
return int;
}
alert(foo.stuff.barbaz); // should alert 2, but I'm missing something
I'm wondering if I'm just misunderstanding the scope of 'this' in this instance, or if this.foobarbaz() is undefined when I assign it to foo.stuff.barbaz.
Is it possible to refer to an object's prototype methods from within a class-level variable like this?
Here is what you need to know:
You should define your method on the prototype like foo.prototype.foobarbaz = function(int) {...}. Your current syntax is not valid.
You're trying to use the method before you define it. If you're expecting function hoisting to work here, that only applies to function declarations, not assignments. Move the assignment of foobarbaz above the first time you use it.
In this function you've provided, this is not foo. Each function has its own value of this (called the function's "context"), set each time the function is invoked. You can see the rules for how a function's context is set in several answers to Understanding Javascript scope with "var that = this".
Instead, here, you'll need to use foo.foobarbaz(2) instead of this.foobarbaz(2), because this is probably window (assuming you call this code not as the method of an object and not in JavaScript's strict mode).
This is something that I'm sure I should know the answer to, but either I'm just being stupid or I've just somehow never come across this before...
Given the following array, declared in the global scope:
var arr = [function() {
console.dir(this);
}];
I would have expected this to refer to the Window object. However, when calling the function:
arr[0]();​ //Logs Array
It appears that this actually refers to the array. Then, when I store a reference to the function in another variable and call that, this does refer to the Window object:
var func = arr[0];
func(); //Logs Window
So, why does the context of the function change? Here's a fiddle demonstrating the above two cases.
When you call a function as property of an object, such as obj.func(), this refers to obj.
This is exactly what you are doing here. arr is your object and 0 is the property holding a function.
Note: After all, arrays are just objects and their elements are the values of their properties (though properties are typically numerical strings (all properties are strings)).
See MDN - this for more information, in this case:
When a function is called as a method of an object, its this is set to the object the method is called on.
In your second case, you call the function "standalone", hence this refers to window. If the code was run in strict mode though, this would be undefined.
This is because this keyword is actually an operator which returns the reference to the holder (or owner) of a function where it was called. Since in first case the holder is an array (which is an object) it returns an array. In the second case the holder is the window object.
See this article for more details.
be noted:
in JavaScript, this always refers to the function owner.
you can read more about it at quirksmode.
Because the element is a member of the array, and this always points to the owner object (unless you play with bind()/ call()/ apply() etc). If you're not part of an object, this will be the global object; which is window in the browser environment. The exception to this is if you're in strict mode, where this will be undefined.
What you're doing is effectively the same as:
var ar = {
'0' : function () {
console.dir(this);
}
}
ar[0]();
var func = ar[0];
func();
... which may make more sense conceptually.
http://jsfiddle.net/TVtwr/1/
I am wondering if it is possible for an object in javascript to delete itself once it has finished its task.
For example, I have the following object...
var myObject = Object.create(baseObject);
myObject.init = function() {
/* do some stuff... */
delete this;
};
myObject.init();
Does this work? If not, is there another way?
That wouldn't work, first because the this value associated with an execution context is immutable.
You might now think that deleting myObject (by delete myObject;) might work, but that wouldn't do it either.
Variables are really properties of the Variable Object, this object is not accessible by code, it is just in front of in the scope chain, where you do the variable declarations.
The Variable statement, creates those properties with the { DontDelete } attribute, and that causes the delete operator to fail.
An option if you want to achieve this is to nullify your myObject instance, but that doesn't guarantees that another reference is still pointing to that object.
Recommended lectures:
Understanding delete
Variable instantiation
No. this is just a local reference to the object so deleting it does not make the object not exist. There is no way for an object to self destruct in this manner. If you have large objects that you believe should be erased afterwards then you should look at using the Facade or Strategy patterns.
You could try
window.namespace.myObject = Object.create(baseObject);
namespace.myObject.init = function() {
/* do some stuff... */
delete window.namespace.myObject;
}
namespace.myObject.init();