JavaScript execution context of function argument - javascript

function Apple(){
this.name="apple";
}
function Orange(){
this.name="orange";
this.apple = new Apple();
this.apple.onCalled=function(){
alert(this.name);
}
}
Orange.prototype.onCalled=function(){
this.apple.onCalled();
}
var orange = new Orange();
orange.onCalled();
Currently the code shows "apple". How can I modify the "this.apple.onCalled=function()" line so that it shows "orange"?
i.e. I want to pass a function to another object, but when that function is called, access variables of the object who passed the function, not the variables of the object who is executing the function. An obvious solution would be to use global variables (e.g. orange.name) but I'm looking for a better way because there are many objects and I don't want to global everything.

Use a closure.
function Orange(){
this.name="orange";
this.apple = new Apple();
var that = this;
this.apple.onCalled=function() {
alert(that.name);
}
}
Have a read how keyword this works in JS, it's a bit tricky but easy to grasp.

You could write:
Orange.prototype.onCalled=function(){
this.apple.onCalled.call(this);
}
It's hard to give a general answer. The thing to understand is that this is bound upon any function call. That can be explicitly controlled with the call or apply functions, or by the . operator when accessing a function as a property of an object.
The answer Kos gives about using a closure may also be relevant; it depends on the effect you want.

Orange.prototype.onCalled=function(){
this.apple.onCalled.call(this);
}
Example: http://jsfiddle.net/XrtZe/
Have a look at: Scope in JavaScript

Related

Javascript closure & "that" instead of "this" in a specific example

I know this subject had been dealt a lot here, but I saw this specific example on the Pluralsight JS design pattern course, and I'll be glad for your help understanding the closure there.
This is the example:
var Calc = function(start) {
var that = this;
this.add = function(x) {
start = start + x;
return that;
};
this.multiply = function(x) {
start = start * x;
return that;
};
this.equals = function(callback) {
callback(start);
return that;
};
}
new Calc(0)
.add(1)
.add(2)
.multiply(3)
.equals(function(result){
console.log(result); // returns 9
});
Here's the JSFiddle link: http://jsfiddle.net/3yJ8Y/5/
I'll be VERY glad for:
Understanding the "that" use. Why do we need it in this specific
example? it does the same with "this". Can you pls give examples and explain when do we need to do "var that = this"?
Understanding this way of creating functions from an object. why do we have to use "this" and then .functionName? like this.add = ...
A detailed and extensive explanation for this very specific closure example.
Thank you so much!
start becomes a global variable of the Calc object
Each method of the Calc object (add, multiple, equals) references that same global variable
new Calc(0) // <- sets start to 0
.add(1) // calls add() <- sets start to 1
.add(2) // calls add() <- sets start to 3
.multiply(3) // calls multiple() <- sets start to 9
.equals(function(result){
console.log(result); // returns 9
});
Thanks to #elclanrs for reminding me of things I had internalized and forgotten...
That
The important thing here is that that... is unnecessary.
I'll quote an article that #elclanrs linked in his comment on the above post:
Scope In Javascript
JavaScript establishes an execution context for the function call, setting this to the object referenced by whatever came before the last ”.”
Because each method is called with the outer Calc before it's dot, the this value inside that method is assigned as the outer object.
The outer object, in turn, is its own brand new, self-contained scope because it was created with the new keyword:
When new[Calc]() is executed, a completely new object is created transparently in the background. [Calc] is called, and its this keyword is set to reference that new object.
(Scope in Javascript, again, with my edits in brackets).
Now you might be wondering, "How is this:
.add(1)
.add(2)
.multiply(3)
... keeping the right scope? You said that whatever is before the . is passed in as the this variable in this situation!?"
Absolutely true, and in this situation, each method is returning this, which allows method chaining. (They're actually returning that, but we already determined that was an unnecessary variable in this context).
Why use that
First of all, let me say I prefer var self = this over var that = this but there are arguments either way.
Let's arbitrarily modify the object to have a method that looks like this:
this.getInternalThis = function(){
var internalThis = function(){
console.log( this );
}
}
First of all, let's get this out of the way: this example is stupid, but you'll see things like this - a function defined in other scopes - all the time.
Here are the important things to notice:
It's called by name, and nothing more (no prefixed . notation, for example)
... that's it!
When a function is called this way, the engine has to figure out something to assign this as in the scope of the function. It defaults to window.
If you were to run this code, you would get Window in the console.
Now, what if we wanted this inside that internal function call to be the calling value of this?
This situation is where you need a that variable. We can modify the function to look like:
this.getInternalThis = function(){
var that = this,
internalThis = function(){
console.log( that );
};
}
Now when you run this method, you get the value of the calling object in the console.
In my case it was Object { add=function(), multiply=function(), equals=function(), getInternalThis=function()}.
Sometimes, that's what you need or expect, so that's why you would use a var that = this declaration.
Using this. to define a method
As I mentioned earlier:
Because each method is called with the outer Calc before it's dot, the this value inside that method is assigned as the outer object.
Remember that this in the scope of Calc() is a reference to the new Calc object, so each method is being given the Calc object as the value of this (remember, it's before the .!) when they enter their new scope from that context.
Hopefully this gives you a little info on how JavaScript scopes and the assignment of this works.

How can I use closures with function pointers?

My goal is to use closures while still writing clean code. One thing I noticed is that somehow I always end up repeating myself because one of my anonymous functions is needed in more than one case.
To this goal, I want to have these repeated functions stored in an object which I can later reuse.
Now, to my question. I've created this example http://jsfiddle.net/tiagoespinha/tTx64/ and the alert will not fire, because y is null.
However, if I inline the function, everything works fine http://jsfiddle.net/tiagoespinha/tTx64/1/
Is there a trick to work around this? How can I have it working in the first example? The variable y is still there, why can't JS catch it?
You want objects having own variables (y) and sharing functions.
What you really need is probably prototype.
function Holder() {
this.y = 5;
this.myFn();
}
Holder.prototype.myFn = function() {
alert("The value of the closure var is " + this.y);
}
new Holder();
I'd suggest the reading of Introduction to Object-Oriented JavaScript so that you don't try to rebuild OOP with just closures.
//our constructor, each instance will carry a y of 5
function Proto() {
this.y = 5;
}
//a shared function for all instances
Proto.prototype.returnedFn = function() {
alert("The value of the closure var is " + this.y);
}
//just a wrapper for the new instance call.
//I just like it this way to avoid using "new" when making instances
function newFn() {
//return a new instance
return new Proto();
}
//test it out
newFn().returnedFn();
newFn().returnedFn();
Your first example would need some kind of dynamic scoping to work. Javascript is statically scoped.
Closures allow a function to capture some local variables from the scope it's defined in. Holder.myFn isn't defined in a scope that contains variable y.
Also note that every instance of a function has its own closure. Hence it's not possible to define your function once and have it refer to different y's in different contexts. (In your second example the inner function is defined every time you call newFn, so many instances can exist, each with its own copy of y.)
I will also add an answer to my own question to report my findings.
Based on the other solutions provided and partly using the OOP solution, I found another way which also makes use of closures.
// Object prototype which takes an argument
function MyObj(abc) {
// Declare function using a closure
// and thus being able to use the argument
this.myFn = (function(){
return function() {
alert("abc is " + abc);
};
})();
}
// Then we can simply create an object with the
// desired argument and the function will behave as expected
var v = new MyObj(10);
v.myFn();
I think nobody provided this solution possibly because I omitted that I don't really want to store the values locally in the object. I simply want to pass some values in, make use of them in one function and then get rid of the object.
In this case I believe a pure OOP solution might be overkill.
Anyhow, thank you for all the proposed solutions!​

Is it good to write javascript functions inside functions and not use 'new' on the main function?

I now know this works:
function outerfunction(arg1, arg2, arg3) {
var others;
//Some code
innerFunction();
function innerFunction() {
//do some stuff
//I have access to the args and vars of the outerFunction also I can limit the scope of vars in the innerFunction..!
}
//Also
$.ajax({
success : secondInnerFunction;
});
function secondInnerFunction() {
// Has all the same benefits!
}
}
outerFunction();
So, I am not doing a 'new' on the outerFunction, but I am using it as an object! How correct is this, semantically?
There doesn't appear to be anything wrong with what you're doing. new is used to construct a new object from a function that is intended as a constructor function. Without new, no object is created; the function just executes and returns the result.
I assume you're confused about the closure, and how the functions and other variables belonging to the function scope are kept alive after the function exits. If that's the case, I suggest you take a look at the jibbering JavaScript FAQ.
You are not using the outer function as an object. You are using it to provide a closure. The border line is, admittedly, thin, but in this case, you are far away from objects, since you do not pass around any kind of handle to some more generic code invoking methods, all you do is limiting the scope of some variables to the code that needs to be able to see them.
JFTR, there is really no need to give the outer function a name. Just invoke it:
(function() { // just for variable scoping
var others;
...
})()
I do this sort of thing all the time. Yes - javascript blurs the boundary between objects and functions somewhat. Or perhaps, more correctly, a javascript function is just an object that is callable. You would only really use the 'new' prefix if you wanted to have multiple instances of the function. My only suggestion here is that its usually considered good practice to call a function after you've declared it (you are calling the innerFunction before it has been declared) - although that could be considered nit-picking.
This is a valid example.
Functions in JavaScript are first order objects. They can be passed as an argument, returned from a function or even set to a variable. Therefore they are called 'lambda'.
So when you are directly using this function (without new keyword) you are directly dealing with the function as an object. When u are using new keyword, you are dealing with an object instance of the function.

Javascript function change variables scope

I am attempting to declare a function outside of anonymous function but still have acess to all of the anonymous functions variables
Below is demonstrating what I'm talking about.
I just need to get rid of eval.
//Used to determine where the variable is being stored
var variableScope = "global";
(function(window){
var variableScope = 'insideFunction',
appearingToBeGlobalFunction = function(){
alert("This Function appears Global but really isn't");
};
window["addFunction"]=function(funName,fun){
//window[funName] = fun; Doesn't work
eval("window[funName]="+fun+";");
}
})(window);
addFunction("alertTest",function(){
alert(variableScope);
appearingToBeGlobalFunction();
});
//should alert "insideFunction" and "This Function appears Global but really isn't"
alertTest();
Edit: The goal of this question was to ultimately keep the global scope clean from tons of variables, but still have the convenience of accessing, set and calling as if they were global. I have concluded there is a way to doing what I'm after but it requires a deprecated functionality in javascript.
Here is some example code showing how to accomplish the above without eval.
This article discusses how to use "with".
var variableScope = "global";
var customScope = {
variableScope : 'insideFunction',
appearingToBeGlobalFunction : function(){
alert("This Function appears Global but really isn't");
}
};
function alertTest(){
with(customScope){
alert(variableScope);
appearingToBeGlobalFunction();
}
};
//should alert "insideFunction" and "This Function appears Global but really isn't"
alertTest();​
You can't get rid of eval and still expect it to work. That's the only way to take a look at members of the scope after it's been "closed." I've messed around with something similar in the past, but I would never actually use it anywhere. Consider an alternate solution to whatever you're trying to accomplish.
eval("window[funName]="+fun+";");
Oh dear Lord.
The reason this “works” is that you are converting the function fun (alertTest) into a string to put it in the eval argument.
It happens that in most desktop browsers, a native JS function's toString() result will be a string that looks like a function expression containing the same code as the original declaration. You're turning a function back into a string and re-parsing that string in the context of the new enclosing function, so the new function value is the same code but with a different closure.
However, it is not required that Function#toString work like this, and in some cases it won't. It is not safe to rely on function decomposition; avoid.
You can certainly only do this kind of horrific hackery using eval, although there is no reason the window[funName]= part has to be inside the eval. window[funName]= eval('('+fun+')'); would work equally well (badly).
I am attempting to declare a function outside of anonymous function but still have acess to all of the anonymous functions variables
Whyever would you do something crazy like that?
you could force the variables to be in the global scope eg instead of var variableScope = 'insideFunction' you use window.variableScope = 'insideFunction'
The goal of this question was to ultimately keep the global scope clean from tons of variables, but still have the convenience of accessing, set and calling as if they were global. I have concluded there is a way to doing what I'm after but it requires a deprecated functionality in javascript.
Here is some example code showing how to accomplish the above without eval.
This article discusses how to use "with".
var variableScope = "global";
var customScope = {
variableScope : 'insideFunction',
appearingToBeGlobalFunction : function(){
alert("This Function appears Global but really isn't");
}
};
function alertTest(){
with(customScope){
alert(variableScope);
appearingToBeGlobalFunction();
}
};
//should alert "insideFunction" and "This Function appears Global but really isn't"
alertTest();​

How do you explain this structure in JavaScript?

(function()
{
//codehere
}
)();
What is special about this kind of syntax?
What does ()(); imply?
The creates an anonymous function, closure and all, and the final () tells it to execute itself.
It is basically the same as:
function name (){...}
name();
So basically there is nothing special about this code, it just a 'shortcut' to creating a method and invoking it without having to name it.
This also implies that the function is a one off, or an internal function on an object, and is most useful when you need to the features of a closure.
It's an anonymous function being called.
The purpose of that is to create a new scope from which local variables don't bleed out. For example:
var test = 1;
(function() {
var test = 2;
})();
test == 1 // true
One important note about this syntax is that you should get into the habit of terminating statements with a semi-colon, if you don't already. This is because Javascript allows line feeds between a function name and its parentheses when you call it.
The snippet below will cause an error:
var aVariable = 1
var myVariable = aVariable
(function() {/*...*/})()
Here's what it's actually doing:
var aVariable = 1;
var myVariable = aVariable(function() {/*...*/})
myVariable();
Another way of creating a new block scope is to use the following syntax:
new function() {/*...*/}
The difference is that the former technique does not affect where the keyword "this" points to, whereas the second does.
Javascript 1.8 also has a let statement that accomplishes the same thing, but needless to say, it's not supported by most browsers.
That is a self executing anonymous function. The () at the end is actually calling the function.
A good book (I have read) that explains some usages of these types of syntax in Javascript is Object Oriented Javascript.
This usage is basically equivalent of a inner block in C. It prevents the variables defined inside the block to be visible outside. So it is a handy way of constructing a one off classes with private objects. Just don't forget return this; if you use it to build an object.
var Myobject=(function(){
var privatevalue=0;
function privatefunction()
{
}
this.publicvalue=1;
this.publicfunction=function()
{
privatevalue=1; //no worries about the execution context
}
return this;})(); //I tend to forget returning the instance
//if I don't write like this
See also Douglas Crockford's excellent "JavaScript: The Good Parts," available from O'Reilly, here:
http://oreilly.com/catalog/9780596517748/
... and on video at the YUIblog, here:
http://yuiblog.com/blog/2007/06/08/video-crockford-goodstuff/
The stuff in the first set of brackets evaluates to a function. The second set of brackets then execute this function. So if you have something that want to run automagically onload, this how you'd cause it to load and execute.
John Resig explains self-executing anonymous functions here.

Categories

Resources