function bb_graphics_GraphicsContext(){
Object.call(this);
this.bbdevice=null;
this.bbmatrixSp=0;
this.bbix=1.000000;
this.bbiy=0;
this.bbjx=0;
this.bbjy=1.000000;
this.bbtx=0;
this.bbty=0;
this.bbtformed=0;
this.bbmatDirty=0;
this.bbcolor_r=0;
this.bbcolor_g=0;
this.bbcolor_b=0;
this.bbalpha=0;
this.bbblend=0;
this.bbscissor_x=0;
this.bbscissor_y=0;
this.bbscissor_width=0;
this.bbscissor_height=0;
this.bbmatrixStack=new_number_array(192);
}
What does Object.call(this) mean?
Functions in JavaScript are full-fledged objects. They also, when passed as an argument to another function, don't retain their scope. So, in the following code...
var obj1 = {
property1: "blah",
method1: function () {
alert(this.property1);
// do stuff
}
};
function func1 (passedFunction) {
passedFunction();
// do other stuff
}
func1(obj1.method1);
... func1 will call obj1.method1, but it won't alert the value of obj1's property1, because all we've done is pass the function object, not its this context. That's where call and apply come in. They allow you to inject scope, tell the function what the meaning of this will be. The following example works:
var obj1 = {
property1: "blah",
method1: function () {
alert(this.property1);
// do stuff
}
};
function func1 (passedObject, passedFunction) {
passedFunction.call(passedObject);
// do other stuff
}
func1(ob1, obj1.method1);
Now, we've forced or explicitly told obj1.method1 what its context will by invoking call, and passing it the object it's to use as this.
call and apply are almost identical, except for how they handle additional arguments to the function being invoked. See these articles on MDN for more information: call, apply and Function.
All of this having been said, bb_graphics_GraphicsContext is a constructor. (Which you've probably guessed.) You invoke it by using the new keyword, var obj1 = new bb_graphics_GraphicsContext();. When it reaches line 1 of the function, it takes the this object, and calls the generic Object constructor, explicitly injecting the new object this (in the bb_graphics_GraphicsContext constructor) as the this of the Object constructor. I'd assume the writer of this function/constructor was doing this to make sure that the newly created object in bb_graphics_GraphicsContext was getting all the base methods of the base Object. But I don't know why this would be necessary, as if you call bb_graphics_GraphicsContext with the new keyword it will grab all these properties naturally.
Object.call will execute a certain function under the provided context, it can be used to call functions from one object on an other.
The mozilla dev network provides a very good explanation
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call
This will do absolutely nothing except wasting resource and memory allocation.
If the Object.call(this) will have been assigned to a variable or property of the function constructor bb_graphics_GraphicsContext
this.myObject = Object.call(this)
The only thing that you get in that instance is an empty object "THAT DO NO HOLD THE PROVIDED CONTEXT"
function MyConstructor(){
this.test01 = 0;
var b = Object.call(this); // similar to b = {}; or b = new Object()
console.log(b); // log object
console.log(b.test); // log undefined
this.test = 1;
}
var myObject = new MyConstructor();
console.log(myObject, window.test01)
Although Object.call will probably do nothing as expressed here, the concept might be important. Basically, the example you will see on inheritance in the Node.js documentation is:
const util = require('util');
const EventEmitter = require('events');
function MyStream() {
EventEmitter.call(this);
}
util.inherits(MyStream, EventEmitter);
The util.inherits will make a new MyStream inherit (have the same prototype as) EventEmmiter. This could be enough if we are interested in MyStream having access to the functions inherited through the EventEmmiter prototype. But what if there are variables passed on construction? What if we have:
function MyObject() {
this.code = "2nV_ahR";
}
In this case, the code variable is passed on runtime when MyObject gets instantiated. Therefore, a subclass needs to pass:
function MySubObject() {
MyObject.call(this);
}
In order to inherit the code variable. What call does accept a parameter that sets the this variable. So... when I do var o = new MySubObject(), the this inside of MySubObject refers to o, which is then passed to the call method, so that when MyObject does this.code = ... it is actually passing the code to o!
Every JavaScript function has a toString(), call() and apply().
Read more about them on this odetocode.com article
Related
Below I am creating an object in JavaScript. Within the constructor I am setting up an event listener. The problem is that when the event gets fired, this.prop cannot be found, and undefined prints out. How do I solve this?
var someObj = function someObj(){
this.prop = 33;
this.mouseMoving = function() { console.log(this.prop);}
document.getElementById("someDiv").addEventListener('mousemove', this.mouseMoving, true);
}
When the event handler gets called, "this" no longer references the "someObj" object. You need to capture "this" into a local variable that the mouseMoving function will capture.
var someObj = function someObj(){
this.prop = 33;
var self = this;
this.mouseMoving = function() { console.log(self.prop);}
document.getElementById("someDiv").addEventListener('mousemove', this.mouseMoving, true);
}
I'm assuming "someObj is a constructor, i.e. intended to be called with as new someObj(), otherwise "this" will be the global scope.
The "this" keyword can be confusing in JavaScript, because it doesn't work the same way as in other languages. The key thing to remember is that it is bound to the calling object when the function is called, not when the function is created.
The javascript built-in Function.prototype.bind() is intended for this purpose.
For example:
var someObj = function someObj(){
this.prop = 33;
this.mouseMoving = function() { console.log(this.prop);}
document.getElementById("someDiv").addEventListener('mousemove', this.mouseMoving.bind(this),true);
}
More on the bind method here: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
Other wise you have to pass a reference of the object someObj to the element and use that reference in the line:
console.log(this.referenceToObject.prop); //this references the DOM element in an event.
From Section 4.3 of JavaScript: The Good Parts by Douglas Crockford:
Invoking a function suspends the
execution of the current function,
passing control and parameters to the
new function. In addition to the
declared parameters, every function
receives two additional parameters:
this and arguments. The this parameter
is very important in object oriented
programming, and its value is
determined by the invocation pattern.
There are four patterns of invocation
in JavaScript: the method invocation
pattern, the function invocation
pattern, the constructor invocation
pattern, and the apply invocation
pattern. The patterns differ in how
the bonus parameter this is
initialized.
Crockford continues to explains the binding of 'this' in each of these patterns, as follows:
The Method Invocation Pattern:
When a function is stored as a property of an object, we call it a method. When a method is invoked, this is bound to that object.
The Function Invocation Pattern:
When a function is invoked with this pattern, this is bound to the global object. This was a mistake in the design of the language.
The Constructor Invocation Pattern:
If a function is invoked with the new prefix, then a new object will be created with a hidden link to the value of the function's prototype member, and this will be bound to that new object.
The Apply Invocation Pattern:
The apply method lets us construct an array of arguments to use to invoke a function. It also lets us choose the value of this. The apply method takes two parameters. The first is the value that should be bound to this. The second is an array of parameters.
You could use a variable named 'me', to avoid conflict with the global JavaScript variable 'self':
function someObj() {
var me = this;
this.prop = 33;
this.mouseMoving = function() {
alert(me.prop);
}
document.getElementById("someDiv").addEventListener('mousemove', this.mouseMoving, true);
}
First, you need to understand how 'this' works in JavaScript. 'this' keyword doesn't behave how it behaves in other languages like C# or Java. Read following post to understand more,
What is the rationale for the behavior of the 'this' keyword in JavaScript?
Once you understand that, as Matthew outlined in his code, you can save reference to 'this' and use that reference inside the mouseMoving function.
Though overall, I will advise that you use a JavaScript framework (e.g. jQuery, YUI, MooTools) which will take care of these issues for you. E.g. In Internet Explorer, you use addEvent to attach event and not addEventListenr.
You have some typos on your function declaration.
Your prop variable is also defined as a "public" or "visible" member (by using this.prop), doing so forces you to store the reference of this from the outer function (that is actually a reference to the object instance), as a "private" member of the function (using var) to get access the instance of the created object and read the "public" prop member.
You have some alternatives to rewrite this code:
function someObj (){
var self = this;
this.prop = 33;
this.mouseMoving = function() { alert(self.prop);} // You access the current
// instance, stored in *self*
// since *this*, inside the
// function, is in another
// context.
//...
}
var mySomeObj = new someObj(); // Object instantiation
Or you could:
function someObj (){
var prop = 33;
this.mouseMoving = function() { alert(prop);}
//...
}
var mySomeObj = new someObj(); // Object instantiation
The variables declared with var, are accesible to the functions declared inside of the major constructor function, this feature is known as Closures.
In C++, the language I'm most comfortable with, usually one declares an object like this:
class foo
{
public:
int bar;
int getBar() { return bar; }
}
Calling getBar() works fine (ignoring the fact that bar might be uninitialized). The variable bar within getBar() is in the scope of class foo, so I don't need to say this->bar unless I really need to make it clear that I'm referring to the class' bar instead of, say, a parameter.
Now, I'm trying to get started with OOP in Javascript. So, I look up how to define classes and try the same sort of thing:
function foo()
{
this.bar = 0;
this.getBar = function() { return bar; }
}
And it gives me bar is undefined. Changing the bar to this.bar fixes the issue, but doing that for every variable clutters up my code quite a bit. Is this necessary for every variable? Since I can't find any questions relating to this, it makes me feel like I'm doing something fundamentally wrong.
EDIT: Right, so, from the comments what I'm getting is that this.bar, a property of an object, references something different than bar, a local variable. Can someone say why exactly this is, in terms of scoping and objects, and if there's another way to define an object where this isn't necessary?
JavaScript has no classes class-based object model. It uses the mightier prototypical inheritance, which can mimic classes, but is not suited well for it. Everything is an object, and objects [can] inherit from other objects.
A constructor is just a function that assigns properties to newly created objects. The object (created by a call with the new keyword) can be referenced trough the this keyword (which is local to the function).
A method also is just a function which is called on an object - again with this pointing to the object. At least when that function is invoked as a property of the object, using a member operator (dot, brackets). This causes lots of confusion to newbies, because if you pass around that function (e.g. to an event listener) it is "detached" from the object it was accessed on.
Now where is the inheritance? Instances of a "class" inherit from the same prototype object. Methods are defined as function properties on that object (instead of one function for each instance), the instance on which you call them just inherits that property.
Example:
function Foo() {
this.bar = "foo"; // creating a property on the instance
}
Foo.prototype.foo = 0; // of course you also can define other values to inherit
Foo.prototype.getBar = function() {
// quite useless
return this.bar;
}
var foo = new Foo; // creates an object which inherits from Foo.prototype,
// applies the Foo constructor on it and assigns it to the var
foo.getBar(); // "foo" - the inherited function is applied on the object and
// returns its "bar" property
foo.bar; // "foo" - we could have done this easier.
foo[foo.bar]; // 0 - access the "foo" property, which is inherited
foo.foo = 1; // and now overwrite it by creating an own property of foo
foo[foo.getBar()]; // 1 - gets the overwritten property value. Notice that
(new Foo).foo; // is still 0
So, we did only use properties of that object and are happy with it. But all of them are "public", and can be overwritten/changed/deleted! If that doesn't matter you, you're lucky. You can indicate "privateness" of properties by prefixing their names with underscores, but that's only a hint to other developers and may not be obeyed (especially in error).
So, clever minds have found a solution that uses the constructor function as a closure, allowing the creating of private "attributes". Every execution of a javascript function creates a new variable environment for local variables, which may get garbage collected once the execution has finished. Every function that is declared inside that scope also has access to these variables, and as long as those functions could be called (e.g. by an event listener) the environment must persist. So, by exporting locally defined functions from your constructor you preserve that variable environment with local variables that can only be accessed by these functions.
Let's see it in action:
function Foo() {
var bar = "foo"; // a local variable
this.getBar = function getter() {
return bar; // accesses the local variable
}; // the assignment to a property makes it available to outside
}
var foo = new Foo; // an object with one method, inheriting from a [currently] empty prototype
foo.getBar(); // "foo" - receives us the value of the "bar" variable in the constructor
This getter function, which is defined inside the constructor, is now called a "privileged method" as it has access to the "private" (local) "attributes" (variables). The value of bar will never change. You also could declare a setter function for it, of course, and with that you might add some validation etc.
Notice that the methods on the prototype object do not have access to the local variables of the constructor, yet they might use the privileged methods. Let's add one:
Foo.prototype.getFooBar = function() {
return this.getBar() + "bar"; // access the "getBar" function on "this" instance
}
// the inheritance is dynamic, so we can use it on our existing foo object
foo.getFooBar(); // "foobar" - concatenated the "bar" value with a custom suffix
So, you can combine both approaches. Notice that the privileged methods need more memory, as you create distinct function objects with different scope chains (yet the same code). If you are going to create incredibly huge amounts of instances, you should define methods only on the prototype.
It gets even a little more complicated when you are setting up inheritance from one "class" to another - basically you have to make the child prototype object inherit from the parent one, and apply the parent constructor on child instances to create the "private attributes". Have a look at Correct javascript inheritance, Private variables in inherited prototypes, Define Private field Members and Inheritance in JAVASCRIPT module pattern and How to implement inheritance in JS Revealing prototype pattern?
Explicitly saying this.foo means (as you've understood well) that you're interested about the property foo of the current object referenced by this. So if you use: this.foo = 'bar'; you're going to set the property foo of the current object referenced by this equals to bar.
The this keyword in JavaScript doesn't always mean the same thing like in C++. Here I can give you an example:
function Person(name) {
this.name = name;
console.log(this); //Developer {language: "js", name: "foo"} if called by Developer
}
function Developer(name, language) {
this.language = language;
Person.call(this, name);
}
var dev = new Developer('foo', 'js');
In the example above we're calling the function Person with the context of the function Developer so this is referencing to the object which will be created by Developer. As you might see from the console.log result this is comes from Developer. With the first argument of the method call we specify the context with which the function will be called.
If you don't use this simply the property you've created will be a local variable. As you might know JavaScript have functional scope so that's why the variable will be local, visible only for the function where it's declared (and of course all it's child functions which are declared inside the parent). Here is an example:
function foo() {
var bar = 'foobar';
this.getBar = function () {
return bar;
}
}
var f = new foo();
console.log(f.getBar()); //'foobar'
This is true when you use the var keyword. This means that you're defining bar as local variable if you forget var unfortunately bar will became global.
function foo() {
bar = 'foobar';
this.getBar = function () {
return bar;
}
}
var f = new foo();
console.log(window.bar); //'foobar'
Exactly the local scope can help you to achieve privacy and encapsulation which are one of the greatest benefits of OOP.
Real world example:
function ShoppingCart() {
var items = [];
this.getPrice = function () {
var total = 0;
for (var i = 0; i < items.length; i += 1) {
total += items[i].price;
}
return total;
}
this.addItem = function (item) {
items.push(item);
}
this.checkOut = function () {
var serializedItems = JSON.strigify(items);
//send request to the server...
}
}
var cart = new ShoppingCart();
cart.addItem({ price: 10, type: 'T-shirt' });
cart.addItem({ price: 20, type: 'Pants' });
console.log(cart.getPrice()); //30
One more example of the benefits of the JavaScript scope is the Module Pattern.
In Module Pattern you can simulate privacy using the local functional scope of JavaScript. With this approach you can have both private properties and methods. Here is an example:
var module = (function {
var privateProperty = 42;
function privateMethod() {
console.log('I\'m private');
}
return {
publicMethod: function () {
console.log('I\'m public!');
console.log('I\'ll call a private method!');
privateMethod();
},
publicProperty: 1.68,
getPrivateProperty: function () {
return privateProperty;
},
usePublicProperty: function () {
console.log('I\'ll get a public property...' + this.publicProperty);
}
}
}());
module.privateMethod(); //TypeError
module.publicProperty(); //1.68
module.usePublicProperty(); //I'll get a public property...1.68
module.getPrivateProperty(); //42
module.publicMethod();
/*
* I'm public!
* I'll call a private method!
* I'm private
*/
There's a little strange syntax with the parentless wrapping the anonymous functions but forget it for the moment (it's just executing the function after it's being initialized). The functionality can be saw from the example of usage but the benefits are connected mainly of providing a simple public interface which does not engages you with all implementation details. For more detailed explanation of the pattern you can see the link I've put above.
I hope that with this :-) information I helped you to understand few basic topics of JavaScript.
function Foo() {
this.bar = 0;
this.getBar = function () { return this.bar };
}
When you call the function above with the new keyword - like this...
var foo = new Foo();
... - a few things happen:
1) an object is created
2) the function is executed with the this keyword referencing that object.
3) that object is returned.
foo, then, becomes this object:
{
bar: 0,
getBar: function () { return this.bar; }
};
Why not, then, just do this:
var foo = {
bar: 0,
getBar: function () { return this.bar; }
};
You would, if it's just that one simple object.
But creating an object with a constructor (that's how it's called) gives us a big advantage in creating multiple of the "same" objects.
See, in javascript, all functions are created with a prototype property [an object], and all objects created with that function (by calling it with the new keyword) are linked to that prototype object. This is why it's so cool - you can store all common methods (and properties, if you wanted to) in the prototype object, and save a lot of memory. This is how it works:
function Foo( bar, bob ) {
this.bar = bar;
this.bob = bob;
}
Foo.prototype.calculate = function () {
// 'this' points not to the 'prototype' object
// as you could've expect, but to the objects
// created by calling Foo with the new keyword.
// This is what makes it work.
return this.bar - this.bob;
};
var foo1 = new Foo(9, 5);
var foo2 = new Foo(13, 3);
var result1 = foo1.calculate();
var result2 = foo2.calculate();
console.log(result1); //logs 4
console.log(result2); //logs 10
That's it!
To get closer to OOP in JavaScript, you might want to take a look into a Module design pattern (for instance, described here).
Based on the closure effect, this pattern allows emulating private properties in your objects.
With 'private' properties you can reference them directly by its identifier (i.e., no this keyword as in constructors).
But anyway, closures and design patterns in JS - an advanced topic. So, get familiar with basics (also explained in the book mentioned before).
In javascript this always refers to the owner object of the function. For example, if you define your function foo() in a page, then owner is the javascript object windows; or if you define the foo() on html element <body>, then the owner is the html element body; and likewise if you define the function onclick of element <a>, then the owner is the anchor.
In your case, you are assigning a property bar to the 'owner' object at the begining and trying to return the local variable bar.
Since you never defined any local varialbe bar, it is giving you as bar is undefined.
Ideally your code should have defined the variable as var bar; if you want to return the value zero.
this is like a public access modifier of objects(variables or functions), while var is the private access modifier
Example
var x = {};
x.hello = function(){
var k = 'Hello World';
this.m = 'Hello JavaScript';
}
var t = new x.hello();
console.log(t.k); //undefined
console.log(t.m); //Hello JavaScript
Regarding this code:
var name = "Jaguar";
var car = {
name:"Ferrari",
getName:function(){
return this.name;
}
};
alert((car.getName = car.getName)());
The output is: Jaguar.
Why does this object correspond to Window and not the object contained in the car variable?
It seems that the fact to reassign the object's function to itself leads to lose the assignment of this to the object when the function is called...
I'm trying to guess: Does it exist a kind of mechanism (using variable or other) that keep an eye on the non-reassignement of an object's function so that if that situation happens, this mechanism would prevent the assignement of the this keyword as usual (as being equals to the object)?
The reason is fairly subtle: this in JavaScript is determined entirely by how a function is called. To have this set to car during the call to getName, you have to call getName immediately upon retrieving it from the car object, like this:
car.getName() // or
car["getName"]()
(Or via Function#call or Function#apply, which let you specify the value for this explicitly.)
What you're doing in your example is effectively this:
// Set f to the result of the assignment expression,
// which is a reference to the getName function
var f = (car.getName = car.getName);
// Call it (separately)
f();
...which is different. Functions called in that way get this set to the global object (window, in browsers). (Except in strict mode; in strict mode this would be undefined.)
More (from my anemic blog):
Mythical methods
You must remember this
Does it exist a kind of mechanism (using variable or other) that keep an eye on the non-reassignement of an object's function so that if that situation happens, this mechanism would prevent the assignement of the this keyword as usual (as being equals to the object)?
I'm not entirely sure I follow that question, but if you want to have a function that always has a preset this value, then yes, there are a couple of ways to do that.
One is to use the new ES5 function bind:
var name = "Jaguar";
var car = {
name: "Ferrari"
};
car.getName = function(){
return this.name;
}.bind(car);
alert((car.getName = car.getName)()); // "Ferrari"
bind returns a function that always has this set to the argument you give it.
The other way is to use a closure. And in fact, you can create a bind-like function in ES3 very easily:
function pseudoBind(func, thisArg) {
return function() {
return func.apply(thisArg, arguments);
};
}
That doesn't do everything bind does, but it does the this part. Then you'd have:
var name = "Jaguar";
var car = {
name: "Ferrari"
};
car.getName = pseudoBind(function(){
return this.name;
}, car);
alert((car.getName = car.getName)()); // "Ferrari"
More on closures (again from the blog):
Closures are not complicated
In a future spec, we'll be getting a declarative way of creating functions that have a preset this value (so-called "arrow functions" because the syntax for them involves uses => rather than the function keyword).
Aaah, this resolution...Lets take a gander.
var toy = {
log : function () { console.log(this); }
};
toy.log() //logs the toy object
So far, it seems like this resolution is static: Wherever the method was defined in, that's its this value.
But! What if we do this:
var sneakyBastard = toy.log;
sneakyBastard(); //logs Window
this is bound to the object it's called with. In the case of toy.log, you called log in the context of the toy object. But, sneakyBastard has no set context, so it's as if you've called window.sneakyBastard.
Now let's take a goose (goose? gander? no...) at your expression:
(car.getName = car.getName)()
...and what does an assignment return? The assigned value, in this case, a function, car.getName. We can break this expression into two:
var returnedValue = (car.getName = car.getName);
returnedValue();
...and from here it's obvious.
Instead of calling getName from the context of an object, you're calling it from the context of the return result of the grouping operator (which in this case there's no context).
In JavaScript, when there's no clear context defined, a default is used. The default is...
the global object when in strict mode
undefined when not in strict mode
You have put your function call parenthesis (()) so they call the result of the expression (car.getName = car.getName) (which is the value (a function) assigned to car.getName)
Consider the following code:
function A() {}
A.prototype.go = function() {
console.log(this); //A { go=function()}
var f = function() {
console.log(this); //Window
};
f();
}
var a = new A();
a.go();
Why does 'this' inside function 'f' refers to the global scope? Why it is not the scope of function 'A' ?
JavaScript has a different concept of what the special name this refers to
than most other programming languages do. There are exactly five different
ways in which the value of this can be bound in the language.
The Global Scope
this;
When using this in global scope, it will simply refer to the global object.
Calling a Function
foo();
Here, this will again refer to the global object.
ES5 Note: In strict mode, the global case no longer exists.
this will instead have the value of undefined in that case.
Calling a Method
test.foo();
In this example, this will refer to test.
Calling a Constructor
new foo();
A function call that is preceded by the new keyword acts as
a constructor. Inside the function, this will refer
to a newly created Object.
Explicit Setting of this
function foo(a, b, c) {}
var bar = {};
foo.apply(bar, [1, 2, 3]); // array will expand to the below
foo.call(bar, 1, 2, 3); // results in a = 1, b = 2, c = 3
When using the call or apply methods of Function.prototype, the value of
this inside the called function gets explicitly set to the first argument
of the corresponding function call.
As a result, in the above example the method case does not apply, and this
inside of foo will be set to bar.
Note: this cannot be used to refer to the object inside of an Object
literal. So var obj = {me: this} will not result in me referring to
obj, since this only gets bound by one of the five listed cases.
Common Pitfalls
While most of these cases make sense, the first one is to be considered another
mis-design of the language because it never has any practical use.
Foo.method = function() {
function test() {
// this is set to the global object
}
test();
}
A common misconception is that this inside of test refers to Foo; while in
fact, it does not.
In order to gain access to Foo from within test, it is necessary to create a
local variable inside of method which refers to Foo.
Foo.method = function() {
var that = this;
function test() {
// Use that instead of this here
}
test();
}
that is just a normal variable name, but it is commonly used for the reference to an
outer this. In combination with closures, it can also
be used to pass this values around.
Assigning Methods
Another thing that does not work in JavaScript is function aliasing, which is
assigning a method to a variable.
var test = someObject.methodTest;
test();
Due to the first case, test now acts like a plain function call; therefore,
this inside it will no longer refer to someObject.
While the late binding of this might seem like a bad idea at first, in
fact, it is what makes prototypal inheritance work.
function Foo() {}
Foo.prototype.method = function() {};
function Bar() {}
Bar.prototype = Foo.prototype;
new Bar().method();
When method gets called on a instance of Bar, this will now refer to that
very instance.
Disclaimer: Shamelessy stolen from my own resources at http://bonsaiden.github.com/JavaScript-Garden/#function.this
The reason why is you are invoking f as a function and not a method. When invoked as a function this is set to window during the execution of the target
// Method invocation. Invoking a member (go) of an object (a). Hence
// inside "go" this === a
a.go();
// Function invocation. Invoking a function directly and not as a member
// of an object. Hence inside "f" this === window
f();
// Function invocation.
var example = a.go;
example();
The scope of all functions is window.
To circumvent that, you can do this:
function A() {}
A.prototype.go = function() {
var self = this;
console.log(self); //A { go=function()}
var f = function() {
console.log(self); //A { go=function()}
};
f();
}
Because function f() is not called without any object reference. Try,
f.apply(this);
I definitely need some light on this.
What's the diference between:
var MY_APP = function(){
this.firstMethod = function(){
//something
};
this.secondMethod = function(){
//something
};
};
and
var MY_APP = {
firstKey: function(){
//something
},
secondKey: function(){
//something
}
};
besides the obvious fact that one is a Function and the other an Object, what are the differences in code flow, prototypes, patterns... whatever, and when should we use the first or the second?
I'm so spaced out in this area that i'm not sure if i'm correctly explaining the doubt, but further info can be given if you ask.
The key difference between the two is in how they are intended to be used. A constructor, as its name suggests, is designed to create and set up multiple instances of an object. An object literal on the other hand is one-off, like string and number literals, and used more often as configuration objects or global singletons (e.g. for namespacing).
There are a few subtleties about the first example to note:
When the code is executed, an anonymous function is created and assigned to MY_APP, but nothing else happens. firstMethod and secondMethod don't exist until MY_APP is explicitly called.
Depending on how MY_APP is called, the methods firstMethod and secondMethod will end up in different places:
MY_APP(): Since no context is supplied, the this defaults to window and the methods will become global.
var app1 = new MY_APP(): Due to the new keyword, a new object is created and becomes the default context. this refers to the new object, and the methods will get assigned to the new object, which subsequently gets assigned to app1. However, MY_APP.firstMethod remains undefined.
MY_APP.call(YOUR_APP): This calls my MY_APP but sets the context to be another object, YOUR_APP. The methods will get assigned to YOUR_APP, overriding any properties of YOUR_APP with the same names. This is a really flexible method that allows multiple inheritance or mixins in Javascript.
Constructors also allow another level of flexibility since functions provide closures, while object literals do not. If for example firstMethod and secondMethod rely on a common variable password that is private to the object (cannot be accessed outside the constructor), this can be achieved very simply by doing:
var MY_APP = function(){
var password = "GFHSFG";
this.firstMethod = function(){
// Do something with password
alert(password); // Woops!
};
this.secondMethod = function(){
// Do something else with password
};
};
MY_APP();
alert(password); // undefined
alert(MY_APP.password); // undefined
The first is a function, the second is an object literal. Since Functions in JS are first class objects, a function can have properties on it, just like any other object can.
Typically, if you want to create a "class" that you might be familiar with from classical inheritance languages, you would do something like
function MyClass() {...}
as is documented here http://www.crockford.com/javascript/inheritance.html
To answer the question posed in your edits, you would use them both in different situations. Object literals are used to pass configurations around. A typical usage pattern would be a method that accepts an object literal like so
something.init({
length: 10,
height: 10,
text: 'some text'
});
and so on.
You could use something similar to your first example when creating a namespace. Javascript has some interesting language features in that you can have so-called "self-invoking functions" that are of the form:
var myApp = (function(){
var firstMethod = function() {...}
...
})();
the motivations behind doing something like this are detailed here
http://sparecycles.wordpress.com/2008/06/29/advanced-javascript/
You can also investigate the differences via your favorite javascript debugging console. In firebug and chrome, I did the following:
var ol = {}; ol.prototype;
var fn = function(){}; fn.prototype;
the first line prints undefined, the second returns a prototype with a constructor of 'function'
The constructor can be reused as is, the object literal would need to be repeated or wrapped in a function to be reused.
Example of wrapping the object literal in a function:
function MY_APP() {
return {
firstKey: function(){
//something
},
secondKey: function(){
//something
}
};
}
The object created using the constructor will have it's constructor property set to the constructor function. However, as you used an anonymous function assigned to a variable instead of a named function, the constructor will still be nameless.
Other than that, there isn't really any differences. Both create anonymous functions that are assigned to the properties of the object, so the resulting objects are the same. You can compare this to assigning named functions to the properties, or using prototype functions, both having the difference that each function only exists once instead of being created over and over for each object.
There is some confusion in JavaScript regarding the difference between a function and an object.
In the first case,
var MY_APP = function() { this.v = 7; ... }
or
function MY_APP(x) { this.v = x; ... }
a function is declared, not an object. In MY_APP, this refers to the global object.
Meaning that calling the function MY_APP(7) will assign v globally to the value of 7. (and in your case the function firstMethod would be declared globally).
MY_APP(3); // The global variable v is set to 3
MY_APP(4); // The global variable v is overwritten and set to 4
To use MY_APP as an object, it needs to be instantiated, for instance
var obj1 = new MY_APP(3);
var obj2 = new MY_APP(4);
will have obj1.v to be 3, and obj2.v to be 4.
Note you can also add methods using the prototype keyword (instead of this.firstMethod...)
MY_APP.prototype.firstMethod = function () { ... }
In the second case
var MY_APP = { ... };
an object, one object, is created and its name is MY_APP. The this keywords refers to that object, MY_APP.