declaring protected variable in javascript - javascript

How do i declare protected variable. Let me give an example here
// Constructor
function Car(){
// Private Variable
var model;
}
// Public variable
Car.prototype.price = "5 Lakhs";
// Subtype
function Indiancar(){
}
// Prototype chaining
Indiancar.prototype = new Car();
// Instantiating Superclass object
var c = new Car();
// Instantiating subclass object
var ic = new Indiancar();
in this I would like to have a variable that is accessible as ic.variabl that is also present in car class.

You would do something like this:
var Base = function()
{
var somePrivateVariable = 'Hello World';
this.GetVariable = function()
{
return somePrivateVariable;
};
this.SetVariable = function(newText)
{
somePrivateVariable = newText;
};
};
var Derived = function()
{
};
Derived.prototype = new Base();
var instance = new Derived();
alert(instance.GetVariable());
instance.SetVariable('SomethingElse');
alert(instance.GetVariable());
Assuming I understood your question correctly.
EDIT: Updating with true 'private' variable.

There is a way to define protected variables in JavaScript:
A constructor function in javascript may return any object (not necesserily this). One could create a constructor function, that returns a proxy object, that contains proxy methods to the "real" methods of the "real" instance object. This may sound complicated, but it is not; here is a code snippet:
var MyClass = function() {
var instanceObj = this;
var proxyObj = {
myPublicMethod: function() {
return instanceObj.myPublicMethod.apply(instanceObj, arguments);
}
}
return proxyObj;
};
MyClass.prototype = {
_myPrivateMethod: function() {
...
},
myPublicMethod: function() {
...
}
};
The nice thing is that the proxy creation can be automated, if we define a convention for naming the protected methods. I created a little library that does exactly this: http://idya.github.com/oolib/

As has been said, javascript doesn't have protected variables.
In the 10 years since this question was written, Typescript has become a thing, and people interested in OOP in javascript should check it out! It does support protected variables.
That said, I'd like to throw my hat into the ring and provide a method for emulating protected variables using plain javascript, since this is a top Google search result and the top-voted answer as of writing doesn't really fit the bill.
// Declare objects within an anonymous function to limit access.
var objectRefs = (function() {
// This is the object we want to inherit from.
function Base(param1, _protected) {
var _public = this;
var _protected = _protected || {};
var _private = {};
// Declare some variables
_public.shared = "Anyone can access this!";
_protected.inherited = "This is protected";
_private.secretVar = "Children cannot access this.";
// Let's try a few functions.
_public.foo = function() {
// We can access protected and private functions here. This would
// not be possible if we attached it to the prototype.
console.log(_protected.inherited);
console.log(_private.secretVar);
_private.secret();
};
_protected.bar = function() {
// One thing to watch out for: private functions called after
// construction do NOT have access to the object via 'this'. This is
// masked by the fact that I assigned it to the '_public' var.
// More reading: https://stackoverflow.com/q/20279484/3658757
console.log(_public.shared);
};
_private.secret = function() {
// The same warning in _protected.bar applies here too.
console.log(_public.shared);
};
}
// Inherits from Base
function Derived(param1, _protected) {
var _public = this;
var _protected = _protected || {};
var _private = {};
// Inherit (ready for the magic?)
Base.call(this, param1, _protected);
// Since we passed a reference to the "_protected" object as an argument
// to the Base object, it has been attaching all of its protected
// variables to it. We can now access those variables here:
// Outputs "This is protected"
console.log(_protected.inherited);
// We can also access protected functions:
_protected.bar();
// We can even override protected variables and functions.
_protected.inherited = "New value!";
// We cannot access private variables belonging to Base.
// This fails:
// console.log(_private.secretVar);
}
// We don't want to allow public access to the constructors, because this
// would let outside code pass in a '_protected' var. Instead, we create new
// objects that accept all params minus '_protected', and inherit from the
// target object.
return {
Base: function(param1) {
Base.call(this, param1);
},
Derived: function(param1) {
Derived.call(this, param1);
}
};
}());
// Assign the constructors to variables for clarity.
var Base = objectRefs.Base;
var Derived = objectRefs.Derived;
// This is how you construct the object.
var newDerived = new Derived("param1");
// Public functions are accessible.
newDerived.foo();
// Protected functions are not. These fail:
// newDerived.bar();
// newDerived.protected.bar();
So that was fun! This structure makes protected variables function the way you'd expect: inheriting objects can access them, but they're inaccessible from the outside.
For reference, here's what the above code looks like in Typescript:
class Base
{
// Declare some variables
public shared: string = "Anyone can access this!";
protected inherited: string = "This is protected";
private secretVar: string = "Children cannot access this.";
constructor(param1: string) {
// We're not using param1; it's only there as an example.
// If we didn't need any constructor code, we could leave this out.
// Note that Typescript has type checking (hence the name)
}
// Let's try a few functions.
public foo(): void {
console.log(this.inherited)
console.log(this.secretVar)
this.secret();
}
protected bar(): void {
console.log(this.shared);
}
private secret(): void {
console.log(this.shared);
}
}
class Derived extends Base {
constructor(param1: string) {
super(param1);
// Outputs "This is protected"
console.log(this.inherited);
// We can also access protected functions:
this.bar();
// We can even override protected variables and functions.
this.inherited = "New value!";
}
}
// This is how you construct the object.
var newDerived = new Derived("param1");
// Public functions are accessible.
newDerived.foo();
// Protected functions are not. This fails:
// newDerived.bar();
Structurally, this is much clearer. As you're coding, you'll be given an error if you try to access a protected variable from outside the object.
But be aware: if you need the compiled javascript to limit outside access to those variables, Typescript won't do that for you. Here's what the compiled output looks like:
"use strict";
var __extends = (this && this.__extends) || (function () {
var extendStatics = function (d, b) {
extendStatics = Object.setPrototypeOf ||
({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };
return extendStatics(d, b);
};
return function (d, b) {
if (typeof b !== "function" && b !== null)
throw new TypeError("Class extends value " + String(b) + " is not a constructor or null");
extendStatics(d, b);
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
})();
var Base = (function () {
function Base(param1) {
this.shared = "Anyone can access this!";
this.inherited = "This is protected";
this.secretVar = "Children cannot access this.";
}
Base.prototype.foo = function () {
console.log(this.inherited);
console.log(this.secretVar);
this.secret();
};
Base.prototype.bar = function () {
console.log(this.shared);
};
Base.prototype.secret = function () {
console.log(this.shared);
};
return Base;
}());
var Derived = (function (_super) {
__extends(Derived, _super);
function Derived(param1) {
var _this = _super.call(this, param1) || this;
console.log(_this.inherited);
_this.bar();
_this.inherited = "New value!";
return _this;
}
return Derived;
}(Base));
var newDerived = new Derived("param1");
newDerived.foo();
As you can see, not only are the protected variables public, but so are the private ones!
If you need encapsulation in the browser, then you'll have to stick with workarounds like I outlined in the first chunk of code. If you're using encapsulation to help you reason about the code, Typescript is the way to go.

Related

TypeError: can't access property "constructor", object is undefined [duplicate]

What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.

Create a singleton with unique instance in Javascript [duplicate]

What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.

How to create singleton class and where we should use singleton class in Javascript? [duplicate]

What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.

How to Create Protected Object Properties in JavaScript

Is there a JavaScript pattern which mimics "Protected" object properties like what you see in languages like C++ ??
Basically, I'd like to create an Object A which has a number of "protected" object properties which can be accessed ONLY from methods which are defined from the prototype of Object A. i.e. - NOT accessible publicly from non-prototyped methods of A.
For instance, ideally would be like so:
function A(){
var prop1 = 1;
}
A.prototype.myFunc = function(){
var newVar = this.prop1; //newVar now is equivalent to 1
}
var instanceOfA = new A();
var newVar2 = instanceOfA.prop1; //error given as prop1 is "protected"; hence undefined in this case
BTW - I do not want the pattern of privileged member functions accessing private properties since the member function is still public.
There is no object property that can only be accessed from prototyped methods of A and not from non-prototyped methods of A. The language doesn't have that type of feature and I'm not aware of any work-around/hack to implement it.
Using Doug Crockford's methods, you can create member properties that can only be accessed from predefined non-prototyped methods (those defined in the constructor). So, if you're trying to limit access only to a predefined set of methods, this will accomplish that. Other than that, I think you're out of luck.
If you want other ideas, you'd probably get more help if you describe more about what you're actually trying to accomplish in your code rather than just how to emulate a feature in another language. Javascript is so much different than C++ that it's better to start from the needs of the problem rather than try to find an analogy to some C++ feature.
You cannot do it in Javascript.
I found a way for creating protected members. Therefor I call the base constructor and return an object with the protected members at the same time:
var protected = BaseClass.call(this);
Here an example:
function SignedIntegerArray(size)
{
var public = this;
var protected = {};
// private property:
var _maxSize = 10000;
// protected property:
protected.array = [];
// public property:
public.Length = size;
if(!isInteger(size) || size < 0 || size > _maxSize) { throw "argument exception"; }
for(var index = 0; index != size; index++) { protected.array[index] = 0; }
// private method:
function isInteger(i) { return i == i + 0 && i == ~~i; }
// protected method:
protected.checkIndex = function(index) { return index >= 0 && index < size; }
// public methods:
public.SetValue = function(index, value) { if(protected.checkIndex(index) && isInteger(value)) { protected.array[index] = value; } };
public.GetValue = function(index) { if(protected.checkIndex(index)) { return protected.array[index]; } else { throw "index out of range exception"; }}
return protected;
}
function FloatArray(size, range)
{
var public = this;
var protected = SignedIntegerArray.call(this, size); // call the base constructor and get the protected members
// new private method, "isInteger" is hidden...
function isFloat(argument) { return argument != ~~argument; }
// ...but "checkIndex" is accessible
public.SetValue = function(index, value) { if(protected.checkIndex(index) && isFloat(value) && value >= public.MinValue && value <= public.MaxValue) { protected.array[index] = value; } };
// new public properties:
public.MinValue = -range;
public.MaxValue = range;
return protected; // for sub-classes
}
function newObject(className, args) { return new function() { className.apply(this, args)}} // you need to use function.call or function.apply to initialize an object. otherwise the protected-object is empty.
window.addEventListener("load", function()
{
var o = newObject(FloatArray, [4, 50.0]);
o.SetValue(3, 2.1);
console.log(o.GetValue(3));
console.log(o.Length); // property from the base-class
});
This is probably what you're looking for: http://javascript.crockford.com/private.html
function ClassA(init)
{
var protected = {};
protected.prop = init * 10;
if(this.constructor != ClassA) { return protected; }
}
function ClassB()
{
var protected = ClassA.call(this, 5); //console.log(protected.prop);
}
//var a = new ClassA(123);
//var b = new ClassB();
I was interested to find a way to answer your question, and here's what I was able to do.
You'll need this helper:
var ProtectedHandler = (function () {
/// <Sumarry>
/// Tool to handle the protected members of each inheritance.
/// </Summary>
/// <param name="current">Current protected variable.</param>
/// <param name="args">The arguments variable of the object.</param>
/// <param name="callback">The function to initialise the variable in the 'object'.</param>
/// <param name="isParent">Is this the ultimate base object.</param>
function ProtectedHandler(current, args, callback, isParent) {
this.child = getChild(args);
if (callback)
this.callback = callback;
if (isParent)
this.overrideChild(current);
}
// Get the ProtectedHandler from the arguments
var getChild = function (args) {
var child = null;
if (args.length > 0 && (child = args[args.length - 1]) && child.constructor === ProtectedHandler)
return child;
};
// Chain Initialise the protected variable of the object and its inheritances.
ProtectedHandler.prototype.overrideChild = function (newValue) {
if (this.callback != null) {
this.callback(newValue);
}
if (this.child != null) {
this.child.overrideChild(newValue);
}
};
// Static function to create a new instance of the protectedHandler object.
ProtectedHandler.handle = function (protected, arguments, callback, isParent) {
return new ProtectedHandler(protected, arguments, callback, isParent);
};
return ProtectedHandler;
})();
This helper will allow you to handle multiple inheritances. The trick is to copy the protected variable from the base object to your new object (child).
To prove you it's working, here's an example:
// That's the default extends function from typescript (ref: http://www.typescriptlang.org/)
var __extends = this.__extends || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function __() { this.constructor = d; }
__.prototype = b.prototype;
d.prototype = new __();
};
var BaseClass = (function () {
function BaseClass() {
// Members
var private = {},
protected = {},
public = this;
// Constructor
ProtectedHandler.handle(protected, arguments, function () {
protected.type = "BaseClass";
}, true);
// Methods
protected.saySomething = function () {
return "Hello World";
};
public.getType = function () {
return protected.type;
};
}
return BaseClass;
})();
var Person = (function (_super) {
__extends(Person, _super);
function Person(name) {
// Members
var private = {},
protected = {},
public;
// Constructor
_super.call(public = this, ProtectedHandler.handle(protected, arguments, function (p) {
protected = p; //This is required to copy the object from its base object.
protected.name = name;
protected.type = "Person";
}));
//Method
public.getName = function () {
return protected.name;
};
public.saySomething = function () {
return protected.saySomething();
};
}
return Person;
})(BaseClass);
var Child = (function (_super) {
__extends(Child, _super);
function Child(name) {
// Members
var private = {},
protected = {},
public;
// Constructor
_super.call(public = this, name, ProtectedHandler.handle(protected, arguments, function (p) {
protected = p; //This is required to copy the object from its base object.
protected.type = "Child";
}));
//Method
public.setName = function (value) {
return protected.name = value;
};
}
return Child;
})(Person);
And here's the tests:
var testBase = new BaseClass();
testBase.getType(); //"BaseClass"
testBase.saySomething; //undefined
var testPerson = new Person("Nic");
testPerson.getType(); //"Person"
testPerson.saySomething(); //"Hello World"
testPerson.name; //undefined
testPerson.getName() //"Nic"
testPerson.setName; //undefined
var testChild = new Child("Bob");
testChild.getType(); //"Child"
testChild.saySomething(); //"Hello World"
testChild.name; //undefined
testChild.getName(); //"Bob"
testChild.setName("George");
testChild.getName(); //"George"
There is a pattern that I have come to like that does not work the same way as protected access does in most languages, but provides a similar benefit.
Basically, use a builder method to create a closure for properties, and then have that method create a "full" object with liberal access as well as an "exposed" object with more limited access. Place the exposed object into a property of the full object, and return that full object to the caller.
The caller can then make use of the full object (and pass that to other appropriate collaborators), but provide only the exposed object to collaborators that should have the more restricted access.
A contrived example…
// Ring employs a typical private/public pattern while
// RingEntry employs a private/exposed/full access pattern.
function buildRing( size ) {
var i
, head = buildRingEntry( 0 )
, newEntry;
;
head.setNext( head );
for( i = size - 1; i ; i-- ) {
newEntry = buildRingEntry( i );
newEntry.setNext( head.getNext() );
head.setNext( newEntry );
}
function getHead() { return head.exposed; }
return {
getHead : getHead
}
}
function buildRingEntry( index ) {
var next
, exposed
;
function getIndex() { return index; }
function setNext( newNext ) { next = newNext; }
function getNextFullEntry() { return next; }
function getNextExposedEntry() { return next.exposed; }
exposed = {
getIndex : getIndex
, getNext : getNextExposedEntry
};
return {
getIndex : getIndex
, setNext : setNext
, getNext : getNextFullEntry
, exposed : exposed
};
}
If we use that to build a ring of 4 entries ring = buildRing(4);, then ring.getHead().getIndex() gives us 0, ring.getHead().getNext().getIndex() gives us 1, ring.getHead().getNext().getNext().getIndex() gives us 2, etc.
If we try to execute ring.getHead().setNext({}) or ring.getHead().getNext().setNext({}), however, we get an error because setNext is not a property of an exposed entry object.
Caveat:
Since this is in the family of patterns that build the methods again in a new closure for each new object, it is not suitable for situations in which a very high volume of instantiation may be needed.
Take a look at workaround proposed by Maks on his website: Emulating protected members in JavaScript
It emulates protected access level to methods and properties of an object.

Simplest/cleanest way to implement a singleton in JavaScript

What is the simplest/cleanest way to implement the singleton pattern in JavaScript?
I think the easiest way is to declare a simple object literal:
var myInstance = {
method1: function () {
// ...
},
method2: function () {
// ...
}
};
If you want private members on your singleton instance, you can do something like this:
var myInstance = (function() {
var privateVar = '';
function privateMethod () {
// ...
}
return { // public interface
publicMethod1: function () {
// All private members are accessible here
},
publicMethod2: function () {
}
};
})();
This has been called the module pattern, and it basically allows you to encapsulate private members on an object, by taking advantage of the use of closures.
If you want to prevent the modification of the singleton object, you can freeze it, using the ES5 Object.freeze method.
That will make the object immutable, preventing any modification to the its structure and values.
If you are using ES6, you can represent a singleton using ES Modules very easily, and you can even hold private state by declaring variables at the module scope:
// my-singleton.js
const somePrivateState = []
function privateFn () {
// ...
}
export default {
method1() {
// ...
},
method2() {
// ...
}
}
Then you can simply import the singleton object to use it:
import myInstance from './my-singleton.js'
// ...
I think the cleanest approach is something like:
var SingletonFactory = (function(){
function SingletonClass() {
//do stuff
}
var instance;
return {
getInstance: function(){
if (instance == null) {
instance = new SingletonClass();
// Hide the constructor so the returned object can't be new'd...
instance.constructor = null;
}
return instance;
}
};
})();
Afterwards, you can invoke the function as
var test = SingletonFactory.getInstance();
I'm not sure I agree with the module pattern being used as a replacement for a singleton pattern. I've often seen singletons used and abused in places where they're wholly unnecessary, and I'm sure the module pattern fills many gaps where programmers would otherwise use a singleton. However, the module pattern is not a singleton.
Module pattern:
var foo = (function () {
"use strict";
function aPrivateFunction() {}
return { aPublicFunction: function () {...}, ... };
}());
Everything initialized in the module pattern happens when Foo is declared. Additionally, the module pattern can be used to initialize a constructor, which could then be instantiated multiple times. While the module pattern is the right tool for many jobs, it's not equivalent to a singleton.
Singleton pattern:
short form
var Foo = function () {
"use strict";
if (Foo._instance) {
// This allows the constructor to be called multiple times
// and refer to the same instance. Another option is to
// throw an error.
return Foo._instance;
}
Foo._instance = this;
// Foo initialization code
};
Foo.getInstance = function () {
"use strict";
return Foo._instance || new Foo();
}
long form, using module pattern
var Foo = (function () {
"use strict";
var instance; //prevent modification of "instance" variable
function Singleton() {
if (instance) {
return instance;
}
instance = this;
//Singleton initialization code
}
// Instance accessor
Singleton.getInstance = function () {
return instance || new Singleton();
}
return Singleton;
}());
In both versions of the singleton pattern that I've provided, the constructor itself can be used as the accessor:
var a,
b;
a = new Foo(); // Constructor initialization happens here
b = new Foo();
console.log(a === b); //true
If you don't feel comfortable using the constructor this way, you can throw an error in the if (instance) statement, and stick to using the long form:
var a,
b;
a = Foo.getInstance(); // Constructor initialization happens here
b = Foo.getInstance();
console.log(a === b); // true
I should also mention that the singleton pattern fits well with the implicit constructor function pattern:
function Foo() {
if (Foo._instance) {
return Foo._instance;
}
// If the function wasn't called as a constructor,
// call it as a constructor and return the result
if (!(this instanceof Foo)) {
return new Foo();
}
Foo._instance = this;
}
var f = new Foo(); // Calls Foo as a constructor
-or-
var f = Foo(); // Also calls Foo as a constructor
In ES6 the right way to do this is:
class MyClass {
constructor() {
if (MyClass._instance) {
throw new Error("Singleton classes can't be instantiated more than once.")
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass() // Executes succesfully
var instanceTwo = new MyClass() // Throws error
Or, if you don't want an error to be thrown on the second instance creation, you can just return the last instance, like so:
class MyClass {
constructor() {
if (MyClass._instance) {
return MyClass._instance
}
MyClass._instance = this;
// ... Your rest of the constructor code goes after this
}
}
var instanceOne = new MyClass()
var instanceTwo = new MyClass()
console.log(instanceOne === instanceTwo) // Logs "true"
In ECMAScript 2015 (ES6):
class Singleton {
constructor () {
if (!Singleton.instance) {
Singleton.instance = this
}
// Initialize object
return Singleton.instance
}
// Properties & Methods
}
const instance = new Singleton()
Object.freeze(instance)
export default instance
If you're using node.JS then you can take advantage of node.JS caching mechanism and your Singleton will be as simple as:
class Singleton {
constructor() {
this.message = 'I am an instance';
}
}
module.exports = new Singleton();
Please note that we export not the class Singleton but instance Singleton().
Node.JS will cache and reuse the same object each time it’s required.
For more details please check: Node.JS and Singleton Pattern
The following works in Node.js version 6:
class Foo {
constructor(msg) {
if (Foo.singleton) {
return Foo.singleton;
}
this.msg = msg;
Foo.singleton = this;
return Foo.singleton;
}
}
We test:
const f = new Foo('blah');
const d = new Foo('nope');
console.log(f); // => Foo { msg: 'blah' }
console.log(d); // => Foo { msg: 'blah' }
The simplest/cleanest for me means also simply to understand and no bells & whistles as are much discussed in the Java version of the discussion:
What is an efficient way to implement a singleton pattern in Java?
The answer that would fit simplest/cleanest best there from my point of view is:
Jonathan's answer to What is an efficient way to implement a singleton pattern in Java?
And it can only partly be translated to JavaScript. Some of the difference in JavaScript are:
constructors can't be private
Classes can't have declared fields
But given the latest ECMA syntax, it is possible to get close with:
Singleton pattern as a JavaScript class example
class Singleton {
constructor(field1,field2) {
this.field1=field1;
this.field2=field2;
Singleton.instance=this;
}
static getInstance() {
if (!Singleton.instance) {
Singleton.instance=new Singleton('DefaultField1','DefaultField2');
}
return Singleton.instance;
}
}
Example Usage
console.log(Singleton.getInstance().field1);
console.log(Singleton.getInstance().field2);
Example Result
DefaultField1
DefaultField2
If you want to use classes:
class Singleton {
constructor(name, age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
}
let x = new Singleton('s', 1);
let y = new Singleton('k', 2);
Output for the above will be:
console.log(x.name, x.age, y.name, y.age) // s 1 s 1
Another way of writing Singleton using function
function AnotherSingleton (name,age) {
this.name = name;
this.age = age;
if(this.constructor.instance)
return this.constructor.instance;
this.constructor.instance = this;
}
let a = new AnotherSingleton('s', 1);
let b = new AnotherSingleton('k', 2);
Output for the above will be:
console.log(a.name, a.age, b.name, b.age) // s 1 s 1
There is more than one way to skin a cat :) Depending on your taste or specific need you can apply any of the proposed solutions. I personally go for Christian C. Salvadó's first solution whenever possible (when you don't need privacy).
Since the question was about the simplest and cleanest, that's the winner. Or even:
var myInstance = {}; // Done!
This (quote from my blog)...
var SingletonClass = new function() {
this.myFunction() {
// Do stuff
}
this.instance = 1;
}
doesn't make much sense (my blog example doesn't either) because it doesn't need any private variables, so it's pretty much the same as:
var SingletonClass = {
myFunction: function () {
// Do stuff
},
instance: 1
}
I deprecate my answer, see my other one.
Usually the module pattern (see Christian C. Salvadó's answer) which is not the singleton pattern is good enough. However, one of the features of the singleton is that its initialization is delayed till the object is needed. The module pattern lacks this feature.
My proposition (CoffeeScript):
window.singleton = (initializer) ->
instance = undefined
() ->
return instance unless instance is undefined
instance = initializer()
Which compiled to this in JavaScript:
window.singleton = function(initializer) {
var instance;
instance = void 0;
return function() {
if (instance !== void 0) {
return instance;
}
return instance = initializer();
};
};
Then I can do following:
window.iAmSingleton = singleton(function() {
/* This function should create and initialize singleton. */
alert("creating");
return {property1: 'value1', property2: 'value2'};
});
alert(window.iAmSingleton().property2); // "creating" will pop up; then "value2" will pop up
alert(window.iAmSingleton().property2); // "value2" will pop up but "creating" will not
window.iAmSingleton().property2 = 'new value';
alert(window.iAmSingleton().property2); // "new value" will pop up
I got this example from the *JavaScript Patterns
Build Better Applications with Coding and Design Patterns book (by Stoyan Stefanov). In case you need some simple implementation class like a singleton object, you can use an immediate function as in the following:
var ClassName;
(function() {
var instance;
ClassName = function ClassName() {
// If the private instance variable is already initialized, return a reference
if(instance) {
return instance;
}
// If the instance is not created, save a pointer of the original reference
// to the private instance variable.
instance = this;
// All constructor initialization will be here
// i.e.:
this.someProperty = 0;
this.someMethod = function() {
// Some action here
};
};
}());
And you can check this example by following test case:
// Extending defined class like singleton object using the new prototype property
ClassName.prototype.nothing = true;
var obj_1 = new ClassName();
// Extending the defined class like a singleton object using the new prototype property
ClassName.prototype.everything = true;
var obj_2 = new ClassName();
// Testing makes these two objects point to the same instance
console.log(obj_1 === obj_2); // Result is true, and it points to the same instance object
// All prototype properties work
// no matter when they were defined
console.log(obj_1.nothing && obj_1.everything
&& obj_2.nothing && obj_2.everything); // Result true
// Values of properties which are defined inside of the constructor
console.log(obj_1.someProperty); // Outputs 0
console.log(obj_2.someProperty); // Outputs 0
// Changing property value
obj_1.someProperty = 1;
console.log(obj_1.someProperty); // Output 1
console.log(obj_2.someProperty); // Output 1
console.log(obj_1.constructor === ClassName); // Output true
This approach passes all test cases while a private static implementation will fail when a prototype extension is used (it can be fixed, but it will not be simple) and a public static implementation less advisable due to an instance is exposed to the public.
jsFiddly demo.
Short answer:
Because of the non-blocking nature of JavaScript, singletons in JavaScript are really ugly in use. Global variables will give you one instance through the whole application too without all these callbacks, and module pattern gently hides internals behind the interface. See Christian C. Salvadó's answer.
But, since you wanted a singleton…
var singleton = function(initializer) {
var state = 'initial';
var instance;
var queue = [];
var instanceReady = function(createdInstance) {
state = 'ready';
instance = createdInstance;
while (callback = queue.shift()) {
callback(instance);
}
};
return function(callback) {
if (state === 'initial') {
state = 'waiting';
queue.push(callback);
initializer(instanceReady);
} else if (state === 'waiting') {
queue.push(callback);
} else {
callback(instance);
}
};
};
Usage:
var singletonInitializer = function(instanceReady) {
var preparedObject = {property: 'value'};
// Calling instanceReady notifies the singleton that the instance is ready to use
instanceReady(preparedObject);
}
var s = singleton(singletonInitializer);
// Get the instance and use it
s(function(instance) {
instance.doSomething();
});
Explanation:
Singletons give you more than just one instance through the whole application: their initialization is delayed till the first use. This is really a big thing when you deal with objects whose initialization is expensive. Expensive usually means I/O and in JavaScript I/O always mean callbacks.
Don't trust answers which give you interface like instance = singleton.getInstance(), they all miss the point.
If they don't take a callback to be run when an instance is ready, then they won't work when the initializer does I/O.
Yeah, callbacks always look uglier than a function call which immediately returns an object instance. But again: when you do I/O, callbacks are obligatory. If you don't want to do any I/O, then instantiation is cheap enough to do it at program start.
Example 1, cheap initializer:
var simpleInitializer = function(instanceReady) {
console.log("Initializer started");
instanceReady({property: "initial value"});
}
var simple = singleton(simpleInitializer);
console.log("Tests started. Singleton instance should not be initalized yet.");
simple(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
simple(function(inst) {
console.log("Access 2");
console.log("Current property value: " + inst.property);
});
Example 2, initialization with I/O:
In this example, setTimeout fakes some expensive I/O operation. This illustrates why singletons in JavaScript really need callbacks.
var heavyInitializer = function(instanceReady) {
console.log("Initializer started");
var onTimeout = function() {
console.log("Initializer did his heavy work");
instanceReady({property: "initial value"});
};
setTimeout(onTimeout, 500);
};
var heavy = singleton(heavyInitializer);
console.log("In this example we will be trying");
console.log("to access singleton twice before it finishes initialization.");
heavy(function(inst) {
console.log("Access 1");
console.log("Current property value: " + inst.property);
console.log("Let's reassign this property");
inst.property = "new value";
});
heavy(function(inst) {
console.log("Access 2. You can see callbacks order is preserved.");
console.log("Current property value: " + inst.property);
});
console.log("We made it to the end of the file. Instance is not ready yet.");
I think I have found the cleanest way to program in JavaScript, but you'll need some imagination. I got this idea from a working technique in the book JavaScript: The Good Parts.
Instead of using the new keyword, you could create a class like this:
function Class()
{
var obj = {}; // Could also be used for inheritance if you don't start with an empty object.
var privateVar;
obj.publicVar;
obj.publicMethod = publicMethod;
function publicMethod(){}
function privateMethod(){}
return obj;
}
You can instantiate the above object by saying:
var objInst = Class(); // !!! NO NEW KEYWORD
Now with this work method in mind, you could create a singleton like this:
ClassSingleton = function()
{
var instance = null;
function Class() // This is the class like the above one
{
var obj = {};
return obj;
}
function getInstance()
{
if( !instance )
instance = Class(); // Again no 'new' keyword;
return instance;
}
return { getInstance : getInstance };
}();
Now you can get your instance by calling
var obj = ClassSingleton.getInstance();
I think this is the neatest way as the complete "Class" is not even accessible.
Christian C. Salvadó's and zzzzBov's answer have both given wonderful answers, but just to add my own interpretation based on my having moved into heavy Node.js development from PHP/Zend Framework where singleton patterns were common.
The following, comment-documented code is based on the following requirements:
one and only one instance of the function object may be instantiated
the instance is not publicly available and may only be accessed through a public method
the constructor is not publicly available and may only be instantiated if there is not already an instance available
the declaration of the constructor must allow its prototype chain to be modified. This will allow the constructor to inherit from other prototypes, and offer "public" methods for the instance
My code is very similar to zzzzBov's answer except I've added a prototype chain to the constructor and more comments that should help those coming from PHP or a similar language translate traditional OOP to JavaScript's prototypical nature. It may not be the "simplest" but I believe it is the most proper.
// Declare 'Singleton' as the returned value of a self-executing anonymous function
var Singleton = (function () {
"use strict";
// 'instance' and 'constructor' should not be available in a "public" scope
// here they are "private", thus available only within
// the scope of the self-executing anonymous function
var _instance=null;
var _constructor = function (name) {
this.name = name || 'default';
}
// Prototypes will be "public" methods available from the instance
_constructor.prototype.getName = function () {
return this.name;
}
// Using the module pattern, return a static object
// which essentially is a list of "public static" methods
return {
// Because getInstance is defined within the same scope
// it can access the "private" 'instance' and 'constructor' vars
getInstance:function (name) {
if (!_instance) {
console.log('creating'); // This should only happen once
_instance = new _constructor(name);
}
console.log('returning');
return _instance;
}
}
})(); // Self execute
// Ensure 'instance' and 'constructor' are unavailable
// outside the scope in which they were defined
// thus making them "private" and not "public"
console.log(typeof _instance); // undefined
console.log(typeof _constructor); // undefined
// Assign instance to two different variables
var a = Singleton.getInstance('first');
var b = Singleton.getInstance('second'); // passing a name here does nothing because the single instance was already instantiated
// Ensure 'a' and 'b' are truly equal
console.log(a === b); // true
console.log(a.getName()); // "first"
console.log(b.getName()); // Also returns "first" because it's the same instance as 'a'
Note that technically, the self-executing anonymous function is itself a singleton as demonstrated nicely in the code provided by Christian C. Salvadó. The only catch here is that it is not possible to modify the prototype chain of the constructor when the constructor itself is anonymous.
Keep in mind that to JavaScript, the concepts of “public” and “private” do not apply as they do in PHP or Java. But we have achieved the same effect by leveraging JavaScript’s rules of functional scope availability.
You could just do:
var singleton = new (function() {
var bar = 123
this.foo = function() {
// Whatever
}
})()
The clearest answer should be this one from the book Learning JavaScript Design Patterns by Addy Osmani.
var mySingleton = (function () {
// Instance stores a reference to the singleton
var instance;
function init() {
// Singleton
// Private methods and variables
function privateMethod(){
console.log( "I am private" );
}
var privateVariable = "I'm also private";
var privateRandomNumber = Math.random();
return {
// Public methods and variables
publicMethod: function () {
console.log( "The public can see me!" );
},
publicProperty: "I am also public",
getRandomNumber: function() {
return privateRandomNumber;
}
};
};
return {
// Get the singleton instance if one exists
// or create one if it doesn't
getInstance: function () {
if ( !instance ) {
instance = init();
}
return instance;
}
};
})();
For me the cleanest way to do so is:
const singleton = new class {
name = "foo"
constructor() {
console.log(`Singleton ${this.name} constructed`)
}
}
With this syntax you are certain your singleton is and will remain unique. You can also enjoy the sugarness of class syntax and use this as expected.
(Note that class fields require node v12+ or a modern browser.)
This is how I implement singleton pattern using ES6 features. Yes, I know this does not look like an Object-oriented approach, but I find this method is easy to implement and a clean way to implement.
const Singleton = (() => {
var _instance = !_instance && new Object('Object created....');
return () => _instance;
})();
//************************************************************************
var instance1 = Singleton();
var instance2 = Singleton();
console.log(instance1 === instance2); // true
This should work:
function Klass() {
var instance = this;
Klass = function () { return instance; }
}
I believe this is the simplest/cleanest and most intuitive way though it requires ECMAScript 2016 (ES7):
export default class Singleton {
static instance;
constructor(){
if(instance){
return instance;
}
this.state = "duke";
this.instance = this;
}
}
The source code is from: adam-bien.com
I've found the following to be the easiest singleton pattern, because using the new operator makes this immediately available within the function, eliminating the need to return an object literal:
var singleton = new (function () {
var private = "A private value";
this.printSomething = function() {
console.log(private);
}
})();
singleton.printSomething();
Using ES6 classes and private static fields. Invoking new instances of the Singleton class will return the same instance. The instance variable is also private and can't be accessed outside the class.
class Singleton {
// # is a new Javascript feature that denotes private
static #instance;
constructor() {
if (!Singleton.#instance) {
Singleton.#instance = this
}
return Singleton.#instance
}
get() {
return Singleton.#instance;
}
}
const a = new Singleton();
const b = new Singleton();
console.log(a.get() === b.get()) // true
console.log(Singleton.instance === undefined) // true
function Once() {
return this.constructor.instance || (this.constructor.instance = this);
}
function Application(name) {
let app = Once.call(this);
app.name = name;
return app;
}
If you are into classes:
class Once {
constructor() {
return this.constructor.instance || (this.constructor.instance = this);
}
}
class Application extends Once {
constructor(name) {
super();
this.name = name;
}
}
Test:
console.log(new Once() === new Once());
let app1 = new Application('Foobar');
let app2 = new Application('Barfoo');
console.log(app1 === app2);
console.log(app1.name); // Barfoo
Following is the snippet from my walkthrough to implement a singleton pattern. This occurred to me during an interview process and I felt that I should capture this somewhere.
/*************************************************
* SINGLETON PATTERN IMPLEMENTATION *
*************************************************/
// Since there aren't any classes in JavaScript, every object
// is technically a singleton if you don't inherit from it
// or copy from it.
var single = {};
// Singleton Implementations
//
// Declaring as a global object...you are being judged!
var Logger = function() {
// global_log is/will be defined in the GLOBAL scope here
if(typeof global_log === 'undefined'){
global_log = this;
}
return global_log;
};
// The below 'fix' solves the GLOABL variable problem, but
// the log_instance is publicly available and thus can be
// tampered with.
function Logger() {
if(typeof Logger.log_instance === 'undefined') {
Logger.log_instance = this;
}
return Logger.log_instance;
};
// The correct way to do it to give it a closure!
function logFactory() {
var log_instance; // Private instance
var _initLog = function() { // Private init method
log_instance = 'initialized';
console.log("logger initialized!")
}
return {
getLog : function(){ // The 'privileged' method
if(typeof log_instance === 'undefined') {
_initLog();
}
return log_instance;
}
};
}
/***** TEST CODE ************************************************
// Using the Logger singleton
var logger = logFactory(); // Did I just give LogFactory a closure?
// Create an instance of the logger
var a = logger.getLog();
// Do some work
// Get another instance of the logger
var b = logger.getLog();
// Check if the two logger instances are same
console.log(a === b); // true
*******************************************************************/
The same can be found on my gist page.
My two cents: I have a constructor function (CF), for example,
var A = function(arg1){
this.arg1 = arg1
};
I need just every object created by this CF to be the same.
var X = function(){
var instance = {};
return function(){ return instance; }
}();
Test
var x1 = new X();
var x2 = new X();
console.log(x1 === x2)
Singleton:
Ensure a class has only one instance and provides a global point of access to it.
The singleton pattern limits the number of instances of a particular object to just one. This single instance is called the singleton.
defines getInstance() which returns the unique instance.
responsible for creating and managing the instance object.
The singleton object is implemented as an immediate anonymous function. The function executes immediately by wrapping it in brackets followed by two additional brackets. It is called anonymous because it doesn't have a name.
Sample Program
var Singleton = (function () {
var instance;
function createInstance() {
var object = new Object("I am the instance");
return object;
}
return {
getInstance: function () {
if (!instance) {
instance = createInstance();
}
return instance;
}
};
})();
function run() {
var instance1 = Singleton.getInstance();
var instance2 = Singleton.getInstance();
alert("Same instance? " + (instance1 === instance2));
}
run()
Here is a simple example to explain the singleton pattern in JavaScript.
var Singleton = (function() {
var instance;
var init = function() {
return {
display:function() {
alert("This is a singleton pattern demo");
}
};
};
return {
getInstance:function(){
if(!instance){
alert("Singleton check");
instance = init();
}
return instance;
}
};
})();
// In this call first display alert("Singleton check")
// and then alert("This is a singleton pattern demo");
// It means one object is created
var inst = Singleton.getInstance();
inst.display();
// In this call only display alert("This is a singleton pattern demo")
// it means second time new object is not created,
// it uses the already created object
var inst1 = Singleton.getInstance();
inst1.display();
let MySingleton = (function () {
var _instance
function init() {
if(!_instance) {
_instance = { $knew: 1 }
}
return _instance
}
let publicAPIs = {
getInstance: function() {
return init()
}
}
// this prevents customize the MySingleton, like MySingleton.x = 1
Object.freeze(publicAPIs)
// this prevents customize the MySingleton.getInstance(), like MySingleton.getInstance().x = 1
Object.freeze(publicAPIs.getInstance())
return publicAPIs
})();
I needed several singletons with:
lazy initialisation
initial parameters
And so this was what I came up with:
createSingleton ('a', 'add', [1, 2]);
console.log(a);
function createSingleton (name, construct, args) {
window[name] = {};
window[construct].apply(window[name], args);
window[construct] = null;
}
function add (a, b) {
this.a = a;
this.b = b;
this.sum = a + b;
}
args must be Array for this to work, so if you have empty variables, just pass in []
I used the window object in the function, but I could have passed in a parameter to create my own scope
name and construct parameters are only String in order for window[] to work, but with some simple typechecking, window.name and window.construct are also possible.

Categories

Resources