In javascript functions, can you set this.function = function? - javascript

I have run into this jquery plugin and i quite understand how this works:
$.functionone = function(){
function setOptions(newOptions){
...
}
this.setOptions = setOptions;
}
What i dont understand is what does this actually do? this.setOptions = setOptions can you call a function without parenthesis? What is the relationship between this.setOptions and setOptions by itself?

Functions in JavaScript are objects like (nearly) everything else. When you do this:
this.setOptions = setOptions;
you're not calling the setOptions function, you're just assigning a reference to the function to a property, exactly like setting a property to any other object, like this:
var dt;
dt = new Date();
this.today = dt;
With functions, you'd do this so you can later call the function via the property (which sets up the this value to be the object the property's on, which is handy). It's a bit clearer what's going on if you use a different name for the property than for the function:
function functionName() { ... } // Declares the function
this.propertyName = functionName; // Sets the property
functionName(); // Calls the function (with `this` = the global object ["window", on browsers])
this.propertyName(); // Also calls the function (but with `this` = the object the property's on)
The pattern you identified, declaring a function and then separately setting a reference to it on an object, is frequently used to make sure the resulting function has a name. You can create a function and bind it to a property like this:
this.setOptions = function() {
...
};
...but then the function doesn't have a name (the property does, but not the function), which can be an issue when you're trying to debug because debuggers show you the names of functions in various contexts (call stacks, for instance). If a lot of your functions don't have names, even though the properties referring to them do, it makes debugging difficult. More about anonymous vs. named functions here. (There's also a difference in terms of when the function is instantiated, but going into it here would just complicate things.)
You'd think you could combine things, like this:
this.setOptions = function setOptions() { // <=== DON'T DO THIS
...
};
...but although that mostly works, it triggers a bug in Internet Explorer / JScript (it creates two different functions for that code, which is at best a memory waste and at worst a very subtle and time-wasting problem, as it was in this question).

The function setOptions is only called if you add parenthesis: setOptions(). If you do not add parenthesis, you have a reference to a function. This is just like a normal variable, only it contains a function reference instead of some other value.
If you set this.setOptions = setOptions, you make a function setOptions on the this object, which points to the same function as setOptions. That is, if you call it using this.setOptions(), the referenced function will be called.

Related

Javascript: Create a sub-class within a class [duplicate]

I thought I had a reasonable understanding of the this object in JavaScript. When dealing with objects, callbacks, and both events and handlers, I haven't had a problem with it since time immemorial. Now, however, all has changed.
I've fallen head over heels in love with JavaScript. Pure JS, that is, not jQuery, prototype.js, dojo... So naturally, I've taken to using closures. In some cases, though, this is catching me off guard here. Take this snippet for one:
function anyFunc(par)
{
//console.log(par);
console.log(this);
}
function makeClosure(func)
{
return function(par)
{
return func(par);
}
}
var close = makeClosure(anyFunc);
close('Foo');
var objWithClosure = {cls:makeClosure(anyFunc),prop:'foobar'};
objWithClosure.cls(objWithClosure.prop);
var scndObj = {prop:'Foobar2'};
scndObj.cls = makeClosure;
scndObj.cls = scndObj.cls(anyFunc);
scndObj.cls(scndObj.prop);
In all three cases, this logs as the window object. It's an easy fix, of course:
function makeClosure(func)
{
return function(par)
{
return func.call(this,par);
}
}
This fix works, I put it here to avoid people answering this, without explaining what I need to know: why is this behaving the way it does here?
ensures the caller is effectively the object that the closure belongs to. What I fail to understand is this:
Sure enough, this points to the window object in the first case, but in other cases, it shouldn't. I tried logging this in the makeClosure function just before returning, and it did log the object itself, not the window object. But when the actual closure is used, this is back to pointing to the window object. Why?
The only thing I can think of is that, by passing the anyFunc function as an argument, I'm actually passing window.anyFunc. So I tried this quick fix:
function makeClosure(func)
{
var theFunc = func;
return function(par)
{
theFunc(par);
}
}
With the expected results, this now points to the objects, but again: Why? I have a few idea's (theFunc is a reference to the function in the local scope [this > private: theFunc]?), but I'm sure there are people here with a lot more know-how when it comes to JS, so I was hoping to get some more explanation or links to articles worth reading from them...
Thanks
Update
Here's a fiddle, may be I left something out, but here this logs all sorts of things ;)
Edit/Update 2
The case that confuses me is here.
Final Edit
Ok, This is getting a rather messy post. So to clarify: What I was expecting was a behaviour similar to this:
function makeClosure()
{
function fromThisFunc()
{
console.log(this);
}
return fromThisFunc;
}
var windowContext = makeClosure();
windowContext();
var objectContext = {cls:makeClosure()};
objectContext.cls();
What caught me, was that the function anyFunc wasn't declared within the correct scope, and therefore, this pointed to the window object. I found this out by reading an ancient scroll I found somewhere on the web.
But something a little more complicated has happened because the function object now referred to by globalVar was created with a [[scope]] property referring to a scope chain containing the Activation/Variable object belonging to the execution context in which it was created (and the global object). Now the Activation/Variable object cannot be garbage collected either as the execution of the function object referred to by globalVar will need to add the whole scope chain from its [[scope]] property to the scope of the execution context created for each call to it.
So what I needed to do, was simplify rather then complicate things:
function fromThisFunc()
{
console.log(this);
}
function makeClosure(funcRef)
{
//some code here
return funcRef;
}
That should work, right?
PS: I'll except Alnitak's answer, but special thanks goes to Felix Kling for all the patience and info.
As soon as you call:
return func(par);
You're creating a new scope (with its own this) and in this case because you haven't specified an object, this === window usually or undefined in strict mode. The called function does not inherit whatever this was in the calling scope.
Ways to set a value for this are:
myobj.func(par); // this === myobj
or
func.call(myobj, ...) // this === myobj
There are also:
apply
bind
arrow functions, where this is set to the same value as the outer execution context (also see MDN:Arrow functions )
The value of this depends only on whether you call the function as a method or as a function.
If you call it as a method, this will be the object that the method belongs to:
obj.myFunction();
If you call it as a function, this will be the window object:
myFunction();
Note that even if you are in a method that belongs to an object, you still have to call other methods in the object using the method syntax, otherwise they will be called as functions:
this.myOtherFunction();
If you put a method reference in a variable, you will detach it from the object, and it will be called as a function:
var f = obj.myFunction;
f();
The call and apply methods are used to call a function as a method even if it's not a method in the object (or if it's a method in a different object):
myFunction.call(obj);

Can you get the property name through which a function was called?

I've done a lot of searching and some playing around, and I'm pretty sure the answer to this question is no, but I'm hoping a JavaScript expert might have a trick up his sleeve that can do this.
A JavaScript function can be referenced by multiple properties, even on completely different objects, so there's no such thing as the object or property that holds the function. But any time you actually call a function, you must have done so via a single object (at the very least, the window object for global function calls) and property on that object.
(A function can also be called via a function-local variable, but we can consider the function-local variable to be a property of the activation object of the scope, so that case is not an exception to this rule.)
My question is, is there a way to get that property name that was used to call the function, from inside the function body? I don't want to pass in the property name as an argument, or closure around a variable in an enclosing scope, or store the name as a separate property on the object that holds the function reference and have the function access that name property on the this object.
Here's an example of what I want to do:
var callName1 = function() { var callName = /* some magic */; alert(callName); };
var obj1 = {'callName2':callName1, 'callName3':callName1 };
var obj2 = {'callName4':callName1, 'callName5':callName1 };
callName1(); // should alert 'callName1'
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'
From my searching, it looks like the closest you can get to the above is arguments.callee.name, but that won't work, because that only returns the name that was fixed to the function object when it was defined, and only if it was defined as a named function (which the function in my example is not).
I also considered that maybe you could iterate over all properties of the this object and test for equality with arguments.callee to find the property whose value is a reference to the function itself, but that won't work either (in the general case), because there could be multiple references to the function in the object's own (or inherited) property set, as in my example. (Also, that seems like it would be kind of an inefficient solution.)
Can this be done?
Short answer:
No, you cannot get "the property name" used to call your function.
There may be no name at all, or multiple names across different scopes, so "the property name" is pretty ill defined.
arguments.callee is deprecated and should not be used.
There exists no solution that does not use arguments or closure.
Long answer:
As thefourtheye commented, you should rethink what you are trying to do and ask that instead in a new question. But there are some common misconceptions, so I will try to explain why you cannot get the "simple property name".
The reason is because it is not simple.
Before we go ahead, let us clarify something. Activation Objects are not objects at all.
The ECMAScript 5.1 specification calls them Environment Records (10.2.1), but a more common term is Scope chain.
In a browser the global scope is (often) the window object, but all other scopes are not objects.
There may be an object that you use to call a function, and when you call a function you must be in some scope.
With few exceptions, scopes are not objects, and objects are not scopes.
Then, there are many names.
When you call a function, you need to reference it, such as through an object property. This reference may have a name.
Scope chain has declarations, which always have a name.
A Function (the real function, not reference) may also have a function name - your arguments.callee.name - which is fixed at declaration.
Not only are they different names, they are not (always) the "the property name" you are seeking.
var obj = { prop : function f(){} }, func = obj.prop;
// "obj" and "func" are declarations.
// Function name is "f" - use this name instead of arguments.callee
// Property name is "prop"
func(); // Reference name is "func"
obj.prop(); // Reference names are "obj" and "prop"
// But they are the same function!
// P.S. "this" in f is undefined (strict mode) or window (non-strict)
So, a function reference may comes from a binding (e.g. function declaration), an Object (arguments.callee), or a variable.
They are all References (8.7). And reference does have a name (so to speak).
The catch is, a function reference does not always come from an object or the scope chain, and its name is not always defined.
For example a common closure technique:
(function(i){ /* what is my name? */ })(i)
Even if the reference does have a name, a function call (11.2.3) does not pass the reference or its name to the function in any way.
Which keeps the JavaScript engine sane. Consider this example:
eval("(new Function('return function a(){}'))()")() // Calls function 'a'.
The final function call refers the eval function, which refers the result of a new global scope (in strict mode, anyway), which refers a function call statement, which refers a group, which refers an anonymous Function object, and which contains code that expresses and returns a function called 'a'.
If you want to get the "property name" from within a, which one should it get? "eval"? "Function"? "anonymous"? "a"? All of them?
Before you answer, consider complications such as function access across iframes, which has different globals as well as cross origin restriction, or interaction with native functions (Function.prototype.bind for example), and you will see how it quickly becomes hell.
This is also why arguments.caller, __caller__, and other similar techniques are now all deprecated.
The "property name" of a function is even more ill defined than the caller, almost unrealistic.
At least caller is always an execution context (not necessary a function).
So, not knowing what your real problem is, the best bet of getting the "property name" is using closure.
there is no reflection, but you can use function behavior to make adding your own fairly painless, and without resorting to try/catch, arguments.callee, Function.caller, or other strongly frowned-upon behavior, just wasteful looping:
// returning a function from inside a function always creates a new, unique function we can self-identify later:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//the one ugly about this is the extra "()" at the end:
var obj1 = {'callName2':callName(), 'callName3':callName() };
var obj2 = {'callName4':callName(), 'callName5':callName() };
//test out the tattle-tale function:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
if you REALLY want to make it look like an assignment and avoid the execution parens each time in the object literal, you can do this hacky routine to create an invoking alias:
function callName() {
return function callMe(){
for(var it in this) if(this[it]===callMe) return alert(it);
}
};
//make an alias to execute a function each time it's used :
Object.defineProperty(window, 'callNamer', {get: function(){ return callName() }});
//use the alias to assign a tattle-tale function (look ma, no parens!):
var obj1 = {'callName2': callNamer, 'callName3': callNamer };
var obj2 = {'callName4': callNamer, 'callName5': callNamer };
//try it out:
obj1.callName2(); // alerts 'callName2'
obj2.callName5(); // alerts 'callName5'
all that aside, you can probably accomplish what you need to do without all the looping required by this approach.
Advantages:
works on globals or object properties
requires no repetitive key/name passing
uses no proprietary or deprecated features
does not use arguments or closure
surrounding code executes faster (optimized) than
a try/catch version
is not confused by repeated uses
can handle new and deleted (renamed) properties
Caveats:
doesn't work on private vars, which have no property name
partially loops owner object each access
slower computation than a memorized property or code-time repetition
won't survive call/bind/apply
wont survive a setTimeout without bind() or a wrapper function
cannot easily be cloned
honestly, i think all the ways of accomplishing this task are "less than ideal", to be polite, and i would recommend you just bite the coding bullet and pass extra key names, or automate that by using a method to add properties to a blank object instead of coding it all in an object literal.
Yes.
Sort Of.
It depends on the browser. (Chrome=OK, Firefox=Nope)
You can use a factory to create the function, and a call stack parsing hack that will probably get me arrested.
This solution works in my version of Chrome on Windows 7, but the approach could be adapted to other browsers (if they support stack and show the property name in the call stack like Chrome does). I would not recommend doing this in production code as it is a pretty brittle hack; instead improve the architecture of your program so that you do not need to rely on knowing the name of the calling property. You didn't post details about your problem domain so this is just a fun little thought experiment; to wit:
JSFiddle demo: http://jsfiddle.net/tv9m36fr/
Runnable snippet: (scroll down and click Run code snippet)
function getCallerName(ex) {
// parse the call stack to find name of caller; assumes called from object property
// todo: replace with regex (left as exercise for the reader)
// this works in chrome on win7. other browsers may format differently(?) but not tested.
// easy enough to extend this concept to be browser-specific if rules are known.
// this is only for educational purposes; I would not do this in production code.
var stack = ex.stack.toString();
var idx = stack.indexOf('\n');
var lines = ex.stack.substring(idx + 1);
var objectSentinel = 'Object.';
idx = lines.indexOf(objectSentinel);
var line = lines.substring(idx + objectSentinel.length);
idx = line.indexOf(' ');
var callerName = line.substring(0, idx);
return callerName;
}
var Factory = {
getFunction: function () {
return function () {
var callName = "";
try {
throw up; // you don't *have* to throw to get stack trace, but it's more fun!
} catch (ex) {
callName = getCallerName(ex);
}
alert(callName);
};
}
}
var obj1 = {
'callName2': Factory.getFunction(),
'callName3': Factory.getFunction()
};
var obj2 = {
'callName4': Factory.getFunction(),
'callName5': Factory.getFunction()
};
obj1.callName2(); // should alert 'callName2'
obj1.callName3(); // should alert 'callName3'
obj2.callName4(); // should alert 'callName4'
obj2.callName5(); // should alert 'callName5'

why is this private method in a constructor?

I'm a bit puzzled by this coding pattern I've run into even though I've been studying up on 'this.' The following (simplified) code shows the pattern:
var MyConstructor = function MyConstructor() {
this._handlers = {
action: this.handleAction.bind(this)
};
};
MyConstructor.prototype.start = function(someObj) {
this.someObj.on(’some event’, this._handlers.action); //<--here
}
MyConstructor.prototype.handleAction = function() {
//do stuff
}
module.exports = MyConstructor;
My question is, why is the private method in the constructor required? Is this pattern avoid some common problem? Could the line commented //<--here simply be:
this.someObj.on(’some event’, this.handleAction);
No, they are different. The difference is in context, which means the value of this within the function.
this.handleAction passes the function to on without any context. There is no value of this specified. The value will be determined when the function is executed. It is very likely that the value will not be the a MyConstructor object, so this.start, for instance, will not refer to the right object, or indeed perhaps any object at all.
The solution is to bind context. This sets the context forever, so this will always refer to the right value. You see this line of code:
action: this.handleAction.bind(this)
This means that, when the code later refers to this._handlers.action, it will be sending the function to on with the appropriate context, so this will always point to the correct value.
The difference between the following lines
this.someObj.on(’some event’, this.handleAction.bind(this));
this.someObj.on(’some event’, this.handleAction);
... is that the first handleAction will run with this being the instance of MyConstructor, while the second will run in whatever context the event handling mechanism decides. If it is something like this, it will run with this being the global object:
function on (a, callback) {
callback(); // callback is run with this as the global object
// UNLESS it was bound to something else
}
The 'private' _handlers property is just an object that holds references to callbacks bound to the instance. If you were to call bind twice, two functions would be created. The _handlers property makes it so that a single bound function is created which can be used as a handler for any number of events.

JavaScript closure and the this object

I thought I had a reasonable understanding of the this object in JavaScript. When dealing with objects, callbacks, and both events and handlers, I haven't had a problem with it since time immemorial. Now, however, all has changed.
I've fallen head over heels in love with JavaScript. Pure JS, that is, not jQuery, prototype.js, dojo... So naturally, I've taken to using closures. In some cases, though, this is catching me off guard here. Take this snippet for one:
function anyFunc(par)
{
//console.log(par);
console.log(this);
}
function makeClosure(func)
{
return function(par)
{
return func(par);
}
}
var close = makeClosure(anyFunc);
close('Foo');
var objWithClosure = {cls:makeClosure(anyFunc),prop:'foobar'};
objWithClosure.cls(objWithClosure.prop);
var scndObj = {prop:'Foobar2'};
scndObj.cls = makeClosure;
scndObj.cls = scndObj.cls(anyFunc);
scndObj.cls(scndObj.prop);
In all three cases, this logs as the window object. It's an easy fix, of course:
function makeClosure(func)
{
return function(par)
{
return func.call(this,par);
}
}
This fix works, I put it here to avoid people answering this, without explaining what I need to know: why is this behaving the way it does here?
ensures the caller is effectively the object that the closure belongs to. What I fail to understand is this:
Sure enough, this points to the window object in the first case, but in other cases, it shouldn't. I tried logging this in the makeClosure function just before returning, and it did log the object itself, not the window object. But when the actual closure is used, this is back to pointing to the window object. Why?
The only thing I can think of is that, by passing the anyFunc function as an argument, I'm actually passing window.anyFunc. So I tried this quick fix:
function makeClosure(func)
{
var theFunc = func;
return function(par)
{
theFunc(par);
}
}
With the expected results, this now points to the objects, but again: Why? I have a few idea's (theFunc is a reference to the function in the local scope [this > private: theFunc]?), but I'm sure there are people here with a lot more know-how when it comes to JS, so I was hoping to get some more explanation or links to articles worth reading from them...
Thanks
Update
Here's a fiddle, may be I left something out, but here this logs all sorts of things ;)
Edit/Update 2
The case that confuses me is here.
Final Edit
Ok, This is getting a rather messy post. So to clarify: What I was expecting was a behaviour similar to this:
function makeClosure()
{
function fromThisFunc()
{
console.log(this);
}
return fromThisFunc;
}
var windowContext = makeClosure();
windowContext();
var objectContext = {cls:makeClosure()};
objectContext.cls();
What caught me, was that the function anyFunc wasn't declared within the correct scope, and therefore, this pointed to the window object. I found this out by reading an ancient scroll I found somewhere on the web.
But something a little more complicated has happened because the function object now referred to by globalVar was created with a [[scope]] property referring to a scope chain containing the Activation/Variable object belonging to the execution context in which it was created (and the global object). Now the Activation/Variable object cannot be garbage collected either as the execution of the function object referred to by globalVar will need to add the whole scope chain from its [[scope]] property to the scope of the execution context created for each call to it.
So what I needed to do, was simplify rather then complicate things:
function fromThisFunc()
{
console.log(this);
}
function makeClosure(funcRef)
{
//some code here
return funcRef;
}
That should work, right?
PS: I'll except Alnitak's answer, but special thanks goes to Felix Kling for all the patience and info.
As soon as you call:
return func(par);
You're creating a new scope (with its own this) and in this case because you haven't specified an object, this === window usually or undefined in strict mode. The called function does not inherit whatever this was in the calling scope.
Ways to set a value for this are:
myobj.func(par); // this === myobj
or
func.call(myobj, ...) // this === myobj
There are also:
apply
bind
arrow functions, where this is set to the same value as the outer execution context (also see MDN:Arrow functions )
The value of this depends only on whether you call the function as a method or as a function.
If you call it as a method, this will be the object that the method belongs to:
obj.myFunction();
If you call it as a function, this will be the window object:
myFunction();
Note that even if you are in a method that belongs to an object, you still have to call other methods in the object using the method syntax, otherwise they will be called as functions:
this.myOtherFunction();
If you put a method reference in a variable, you will detach it from the object, and it will be called as a function:
var f = obj.myFunction;
f();
The call and apply methods are used to call a function as a method even if it's not a method in the object (or if it's a method in a different object):
myFunction.call(obj);

Javascript: How to access a public variable in the same class?

I recently started programming JavaScript and thought everything would be good...
Well today I faced a problem I can't solve on my own.
My tutorial/ learning project has a class called model. In this class there are several private and one public variable. This variable is of type CustomEvent:
function Model(){
/**
* Array in which the questions are stored
*/
var questions=new Array();
var db;
var valuesSplit="*";
var tableName="quests";
this.myEvent=new CustomEvent("my event");
So as you can see "myEvent" is public and can be called from outside. In this case it is an event which can be subscribed (this is done outside this class by other objects that want to listen) and it can be fired (this is done in the same class). And this is my problem.
How can I access myEvent within the model class?
I tried:
this.myEvent.fire()
and:
myEvent.fire()
But I always get "myEvent is not defined".
Probably the first thing to say is: JavaScript doesn't have classes. The sooner you stop thinking of "JavaScript classes," the better off you'll be. :-) JavaScript has OOP, but not the kind with classes. Your Model function is called a constructor function.
You can access myEvent from any code that has a reference to the object created by new Model, which includes code in your constructor (via this — e.g., the way you're setting it up) and any function called with this referring to that object (or, of course, "externally" via someObjReference.myEvent).
So probably this.myEvent.fire() is what you want, but the code you're calling it from doesn't have the right this value. That's because in JavaScript, this is controlled entirely by how a function is called, not where the function is defined as it is in some other languages. See my blog articles Mythical methods and You must remember this for more details, but I've done a somewhat truncated discussion below.
Here's an example of a fairly standard way to set up a constructor function with useful methods that all instances share:
function Foo() {
this.myEvent = new CustomEvent("my event");
}
Foo.prototype.bar = function() {
this.myEvent.fire();
};
// Usage:
var f = new Foo();
f.bar(); // Fires the event indirectly, via the code in `bar`
f.myEvent.fire(); // Fires it directly
Note that that only works if bar is called with this referring to an object with a myEvent property. It's easy to call bar with this set to something else entirely:
document.getElementById("someID").onclick = f.bar;
When the click occurs, the bar function gets called, but this does not refer to an object created via Model. (It will refer to the element with the id "someID" instead.) And so this line in bar
this.myEvent.fire();
...will fail.
If you're used to class-based languages, you can see how this is totally different from, say, Java, C#, or C++. In those langauges, this inside bar will always refer to an object created via new Model. Not so JavaScript, which is both awkward and powerful.
This flexibility of functions (not being bound to any particular object) is one of the biggest things to get used to, and take advantage of, in JavaScript. The other is how functions are closures, which is powerful but not complicated.
So if this is set by how a function is called, how do you do that? There are two ways:
Call the function by referencing it from an object property in the same expression as the call. That's an awkward way of saying do this:
var f = new Foo();
f.bar(); // <== The key bit
f["bar"](); // <== Also works
The expression f.bar() does two things, which interact: The first thing it does is retrieve the property bar of the object referenced by f, and get that property's value (which is a function reference). Then it calls that function (because of the ()). The way JavaScript works, because you did those two things in the same overall expression, the interpreter sets this to f during the call to bar for you. But note this key distinction:
var f = new Foo();
var b = f.bar;
b(); // <== Different!
Now when the bar function gets called, this will not be set to f (it'll be set to the global object, which is window on browsers), because we've separated the property retrieval from the function call.
Alternately, you can use the built-in features of JavaScript function objects, their call and apply functions. call and apply do exactly the same thing, the only difference between them is how you supply the arguments for the function. Example:
var f = new Foo();
f.bar(1, 2): // <== Calls `bar` with `this` === `f` and passing in
// the arguments 1 and 2
var b = f.bar;
b.call(f, 1, 2); // <== Does the same thing as f.bar(1, 2)
var args = [1, 2];
b.apply(f, args); // <== Does the same thing as f.bar(1, 2)
E.g., call and apply allow you to set what this should be explicitly when you call the function. The only difference between them is that call accepts the arguments to give the function as further arguments to call, and apply accepts them as an array.
If you want to use myEvent in a non public function in your Model than you have to create another reference to the myEvent which isn't using the this reference of your Model. Because the this in another function is something else than in your Model function. The easiest way to bypass this problem is if you define a new variable in your Model:
var that = this;
Then you can call your myEvent like:
that.myEvent
The myEvent member should be visible both in the inner & outer scope of the object :
function Model(){
this.myEvent = 'some value';
this.canAccessEvent = function(){
return 'myEvent' in this;
}
}
var m = new Model();
// access from outside :
alert(m.myEvent);
// access from inside :
alert('Model can access the even? ' + m.canAccessEvent());
However, it is very possible that your new CustomEvent function doesn't exist or does not return a valid object making your myEvent variable to be undefined. I suggest you attribute some other value to the myEvent property and see if it is defined. If it is defined, then the problem lies in your CustomEvent function.

Categories

Resources