Which method of creating javascript objects is better? - javascript

I've seen objects defined in two different ways, which function similarly, but are, of course, fundamentally different. You can do it either like this:
var myobject = {property: 'hello',
act: function() {
this.property += ' world';
}};
and like this:
function myobject() {
this.property = 'hello';
this.act = function() {
this.property += 'world';
}
}
The second method could create objects like so
var newobj = new myobject();
but you could do something similar using the first notation by making the object the return value of a function. The new keyword has the advantage of being able to pass parameters that can be used to initialize the properties of the object, but you could just as easily add an init function to the first kind of object.
Just wondering if besides these two differences, if there was a fundamental difference that made one method definitely better than the other method.

The second is better because you can reuse it. In addition, the constructor property of the constructed object is different in each case.
That aside, the second method wastes space by allocating a new function to the act property each time you call the constructor. (Note that the first method also wastes space in the same way.) Use prototypes instead:
function MyConstructor () {
this.property = 'hello';
}
MyConstructor.prototype = {
act: function () {
this.property += 'world';
}
};
MyConstructor.prototype.constructor = MyConstructor;
var obj = new MyConstructor ();

var f = function () {};
function g () {}
if (typeof(f) === typeof(g)) {
alert(typeof(f) + "\n" + f + "\n" + g);
}
The types are identical and variable f has an anonymous function assigned to it. Since f is a named variable with a function as its value it is a function that is not anonymous. JavaScript is a lambda language of downward inheritance that allows accidental creation of global variables. With regard to complex instances of inheritance where closures are used across the variance namespace scopes you have to be sure where your variables are defined to prevent collisions, especially with consideration for reuse. The first convention forces strict awareness of variable declaration, because the function must be declared before it can be executed. The second convention supplies no such awareness, which is potentially problematic with regards to instantiation and invocation as closure in complex logic prior described. Fortunately, JSLint is smart enough to throw an error when a function is used before it is declared. Since the two conventions are identical in representation I would suggest only using the one that is not open to abuse from flawed and sloppy programming.
In summary if g and f are both named variables with a function as assignment then always do it the right way using the first convention where you declare your variable using the var keyword.

javascript:
canDo="b:c=function(){}";
canNot="function a:d(){}";
eval(canDo);
alert(["Can do ",canDo,
".\n\n\nConfirmed result is: \n\n b:c=",
eval("b:c")
].join(""));
alert(
confirm(
"Click OK to confirm this is not valid (can NOT do):\n\n" + canNot) ?
eval(canNot) : "Test will fail if attempted and 'a:d' will not exist."
);
displays, in FireFox:
Can do b:c=function(){}.
Confirmed result is:
b:c=function () {
}
and
Click OK to confirm this is not valid (can NOT do):
function a:d(){}
which gives a runtime error if OK is chosen.

Related

Performance issue when assigning the same function to multiple variables in JavaScript

[Edited] Important! Function is treated as object, not value. So this question is invalid because it is based on a wrong assumption. This edit serves as a note to avoid confusing anyone who read this question.
Let's say I have a function expression of foo
var foo = function() {
return this.member;
}
and I have the following class and instantiate many objects of it with "foo" as the callback function.
var simpleClass = function(callback) {
this.member = "I am an instance variable";
this.callback = callback;
}
var a = new simpleClass(foo);
var b = new simpleClass(foo);
var c = new simpleClass(foo);
.
.
.
Since in JavaScript arguments are passed by value, we are copying the value([Edited]actually it should be object) of foo to a, b, c and other variables' callback. If my understanding is correct, then foo will be copied n times, each occupying certain memory space for each object.
Base on this understanding, I have some performance questions regarding this situation:
Does copying functions to multiple variables harm the performance?
Since each copies of "foo" as simpleClass object's "callback" occupies space, if there are really many simpleClass object(e.g. in a DOM library I have thousands of DOM objects which has the same function css()), will it harm the performance significantly? Or most JavaScript engine has mechanism to tackle this situation and it generally won't harm at all?
In situation where potentially hundreds or thousands of object will be created. Is it always a good practice to put those shared functions to the prototype of an object?
Since all the object instance share the same class prototype, if we put the "foo" function to the prototype of simpleClass, then there should have only one copy of the "foo" and every object instance will just execute the prototype copy of "foo" when needed. Is this a good practice we should follow?
I try to search for similar keywords but couldn't find the right wordings to find the solution to this problem. Please correct my wordings if I make anything unclear. And of course if I have any misunderstandings please correct me too. I appreciate everyone's help.
I don't understand this well enough to give you an authoritative answer but I can say this:
then foo will be copied n times, each occupying certain memory space for each object.
This is incorrect. foo is a variable pointing to a function. foo is not the function, if you did var bar = foo, bar now also points to the function, the same function. So the function is not copied. A reference to the function is assigned to this.callback.
In situation where potentially hundreds or thousands of object will be created. Is it always a good practice to put those shared functions to the prototype of an object?
What is and isn't good practise in JavaScript is up for debate. Some people like to use class/prototype, other people use object literals. It's definitly true though that prototype can help reduce the memory footprint of your application. See it like this: if you're using prototype you're giving the JavaScript engine more information about the object, ie. that your object is similar to all these other objects. The JavaScript engine should be able to make optimizations based on that. I can't say too much about the exact numbers, it might vary wildly per vendor.
Your code sample is equivalent to this:
function foo() {}
function myClass() {
this.foo = foo;
}
var instance = new myClass();
If you used prototypes you'd write:
function myClass() {}
myClass.prototype.foo = function () {};
var instance = new myClass();
If you used object literals you'd have:
function foo() {};
function create_myClass() {
return {
foo: foo
};
}
var instance = create_myClass();
In all the cases above the function foo is never copied. In these cases below you do create a new copy of foo every time:
function myClass() {
this.foo = function () {}; // new copy every time
}
var instance = new myClass();
function create_myClass() {
return {
foo: function () {}; // new copy every time
};
}
As for performance. This is the tip I always give: don't start optimizing until you run into a measurable problem. Always measure with real data. Additionally, if you think your way of doing things is good then it's likely that JavaScript engine vendors will optimize for that method.
In javascript reference is copied not the object itself so you can't assign the value to callback to change the function from inside constructor. You your code all those object will share the function, look at this snipet:
var foo = function() {
return this.member;
}
var simpleClass = function(callback) {
this.member = "I am an instance variable";
this.callback = callback;
}
var a = new simpleClass(foo);
var b = new simpleClass(foo);
alert(a.callback === b.callback ? 'shared' : 'not shared');

Putting arrays into custom objects

I am attempting to build my first custom object and it looks something like this:
function URLObject()
{
this.syllables = new Array();
etc...
this.AddtoSyllables = AddtoSyllables;
function AddtoSyllables(AWord)
{
var SylCount = this.syllables.length;
alert("This is SylCount: " + SylCount);
}
}
var myobj = new URLObject();
myobj.AdtoSyllables("text");
The execution of the above code results in the JS engine printing out the following:
This is Sylcount: NAN
-or-
This is SylCount: undefined.
I have looked at information in Head First Javascript, in the Javascript bible, and on various JS websites. All of them cover in exhaustive detail the use of arrays of objects, but none of them discuss arrays within objects.
And yet I am doing something wrong here and I do not know what. Can anyone help?
Here you go:
function URLObject()
{
this.syllables = [];
etc...
}
URLObject.prototype.addToSyllables = function(aWord) {
var SylCount = this.syllables.length;
alert("This is SylCount: " + SylCount);
}
var myobj = new URLObject();
myobj.adtoSyllables("text");
.prototype adds the function declared after it to every object constructed by the constructor function. (in your case every object that was instantiated by new URLObject())
Firstly, the code as posted actually works for me on Chrome and Firefox; so this must depend on the JavaScript engine, or else there's something funky going on.
Update: I suspect what may be confusing you is some separate call to AddtoSyllables (in code you haven't shown us) where suddenly this.syllables is no longer defined. This is where the behavior of this can get confusing. I've created a jsFiddle to hopefully explain how it works a bit better for you.
http://jsfiddle.net/J3tUb/
That said, it is often very possible to write code like this without having to use this (or the prototype) at all. For instance:
function createURLObject() {
// Use closed-over locals instead of attaching properties.
var syllables = new Array();
function AddToSyllables(AWord) {
// Since syllables is closed over, it is accessible here
// (but WON'T be accessible outside this scope).
syllables.push(AWord);
return syllables.length;
}
// Expose whatever functionality you want to be "public"
// in the returned object.
return {
AddToSyllables: AddToSyllables
};
}
var myObj = createURLObject();
myObj.AddToSyllables("text");
It is, of course, valuable to understand JavaScript's quirky (and surprising, to most developers coming from other languages) behavior with respect to this. That said, once you do understand it, I suspect you will find that it can often be avoided altogether.
you need to do this :
function URLObject()
{
var that = this;
that.AddtoSyllables = AddtoSyllables;
function AddtoSyllables(AWord)
etc...
Like this you can add method and attributes to one object.
The issue you are having is that the function AddtoSyllables is not a member function or method of the URLObject. It is just a nested function with no object attachments, so all usages of this will result in returning the dom window object. The correct way of declaring the AddtoSyllables function is this:
function URLObject()
{
//...
}
URLObject.prototype.AddtoSyllables = function (AWord)
{
var SylCount = this.syllables.length;
alert("This is SylCount: " + SylCount);
}
To explain the reasons of the behavior in the question, I'd like to clarify that objects in javascript are treated like a map, dictionary or a key-value pair (use the term what suits you best). Using the syntax x.y = value; is equivalent putting the value value into the map x with key y. Having the code:
this.AddtoSyllables = AddtoSyllables;
function AddtoSyllables(AWord)
{
var SylCount = this.syllables.length;
alert("This is SylCount: " + SylCount);
}
adds the AddtoSyllables function as an entry to the object this points to.
The code
myobj.AdtoSyllables(...)
is equivalent to
myobj["AdtoSyllables"](...) // now a retreiaval operation
or even
var fn = myobj["AdtoSyllables"];
fn (...);
Inside the AdtoSyllables function, this is used. Against common expectations, it is not a pointer to the myobj.
The cause of this is that AddtoSyllables is treated as a static method of the URLObject class (as OOP guys would understand it), or even a loose static function (like in C). To make JS treat it like a member of the URLObject object (an instance method to OOP guys), JS must be told to do so. This is achieved through the URLObject.prototype.AddtoSyllables = .... which equivalents to declaration of an instance method.
From an alternative point of view:
function foo() { /* some code using `this` */ }
var bar = {};
var baz = {};
bar.foo = foo; // same as bar["foo"] = foo;
baz.foo = foo; // same az baz["foo"] = foo;
In the above code, this usages inside foo will neither point to bar, nor baz. At the same time bar.foo will point to the very same instance as baz.foo, for foo is also an object.

What are the differences between these three patterns of "class" definitions in JavaScript?

Are there any important/subtle/significant differences under the hood when choosing to use one of these four patterns over the others? And, are there any differences between the them when "instantiated" via Object.create() vs the new operator?
1) The pattern that CoffeeScript uses when translating "class" definitions:
Animal = (function() {
function Animal(name) {
this.name = name;
}
Animal.prototype.move = function(meters) {
return alert(this.name + (" moved " + meters + "m."));
};
return Animal;
})();
and
2) The pattern that Knockout seems to promote:
var DifferentAnimal = function(name){
var self = this;
self.name = name;
self.move = function(meters){
return alert(this.name + (" moved " + meters + "m."));
};
}
and
3) a similar, simple pattern I've often seen:
var DifferentAnimalWithClosure = function(name){
var name = name;
var move = function(meters){
};
return {name:name, move:move};
}
and
4) The pattern that Backbone promotes:
var OneMoreAnimal= ClassThatAlreadyExists.extend({
name:'',
move:function(){}
});
Update 1: Changed pattern #2 and added pattern #3 in response to Elias' response // minor formatting
Just to be clear: JS doesn't know of classes, just objects and custom, self-defined constructor functions, but that's besides the point.
To answer your question in short: yes, there are some small and even some fairly large differences between the various ways of creating a new object you're posting here.
CoffeeScript:
This is actually the most clear-cut and traditional way to create your own constructor, but it has been "optimized" in the sense that it's been ready set-up to use (optional) closure variables.
Basically, what this code does, is use an IIFE, to wrap both the constructor definition and the proptotype method assignments in their own, private scope, that returns a reference to the new constructor. It's just clean, simple JS, no different from what you might write yourself.
Knockout:
Now this threw me a little, because to me, at least, the snippet you provide looks either like part of a module pattern, or a power constructor. But since you're not using strict mode, omitting the new would still make for dangerous situations, and since the entire function goes trough the trouble of creating a new instance of DifferentAnimal, only to then construct a second object literal, assigning all properties of DifferentAnimal to that secondary object, I'd say you're missing something. Because, truth be told, omitting the last return {}; statement here, would probably make no difference at all. Plus: as you can see, you're declaring a method (move) in what is, in essence, a constructor. This means that every instance will be assigned its own function object move, rather then getting it from the prototype.
In short: have another close look at where you got this snippet from, and double-check if this is the full version, because if it is, I can only see arguments against this.
Using a variable, defined inside the constructor is simply: a closure, suppose your properties have a distinct initial state, determined by some arguments, passed to that constructor:
function MyConstructor(param)
{
var paramInit = param/2;//or something
this.p = paramInit;//this property can change later on, so:
this.reInit = function()
{//this method HAS to be inside constructor, every instance needs its own method
this.p = paramInit;//var paramInit can't, it's local to this scope
};
}
var foo = new MyConstructor(10);
console.log(foo.p);//5
foo.p = 'hi';
console.log(foo.p);//hi
foo.reInit();
console.log(foo.p);//5
console.log(foo.paramInit);//undefined, not available outside object: it's a pseudo-private property
That's all there is too it, really. When you see ppl using var that = this; or something, that's often to create a reference to the main object that is available anywhere, without having to deal with the headaches of this (what does this reference? What should the method do when applied to an object other than the one it was originally intended for? etcetera...)
Backbone:
Here, we're dealing with another case: extending objects (IE: using methods, properties of either an existing "class" (constructor) or a particular instance) is not the same as simply creating an object.
As you well know, JS objects can be assigned new properties at any given time. Those properties can be removed, too. Sometimes, prototype properties can be redefined on the instance itself (masking the prototypal behaviour) etc... So it all depends on what you want the resulting object (the newly created object, that extends the given instance) to look like: do you want it to take all properties from the instance, or do you want both objects to use the same prototype somewhere down the line?
Both of these things can be achieved by using simple JS, too, but they just take a bit more effort to write yourself. However, if you write, for example:
function Animal(name)
{
this.name = name;
}
Animal.prototype.eat= function()
{
console.log(this.name + ' is eating');
};
That could be deemed the equivalent of writing:
var Animal = Object.extend({name:'',eat:function()
{
console.log(this.name + ' is eating');
}});
A lot shorter, but lacking the constructor.
new vs Object.create
Well, that's an easy one: Object.create just is a lot more powerful that new: you can define prototype methods, properties (including weather or not they are enumerable, writeable etc...) right at the time you need to create an object, instead of having to write a constructor and a prototype, or create an object literal and mess around with all those Object.defineProperty lines.
The downsides: Some people still aren't using ECMA5 compliant browsers (IE8 is still not quite dead). In my experience: it does become quite hard to debug sizeable scripts after a while: though I tend to use power-constructors more than I do regular constructors, I still have them defined at the very top of my script, with distinct, clear and quite descriptive names, whereas object-literals are things I just create "on-the-fly". Using Object.create, I noticed I tend to create objects that are really a little too complex to qualify as actual object literals, as though they are object literals:
//fictional example, old:
var createSomething = (function()
{
var internalMethod = function()
{//method for new object
console.log(this.myProperty || '');
};
return function(basedOn)
{
var prop, returnVal= {};
returnVal.myProperty = new Date();
returnVal.getCreated = internalMethod;//<--shared by all instances, thx to closure
if (!basedOn || !(basedOn instanceof Object))
{//no argument, or argument is not an object:
return returnVal;
}
for (prop in basedOn)
{//extend instance, passed as argument
if (basedOn.hasOwnProperty(prop) && prop !== '_extends')
{
returnVal[prop] = basedOn[prop];
}
}
returnVal._extends = basedOn;//<-- ref as sort-of-prototype
return returnVal;
};
}());
Now this is pretty verbose, but I've got my basic constructor ready, and I can use it to extend an existing instance, too. It might seem less verbose to simply write:
var createSomething = Object.create(someObject, {getCreated:function()
{
console.log(this.myProperty);
},
myProperty:new Date()});
But IMO, this makes it harder on you do keep track of what object is created where (mainly because Object.create is an expression, and will not be hoisted.Ah well, that's far from a conclusive argument of course: both have their pro's and con's: I prefer using module patters, closures and power constructors, if you don't that's just fine.
Hope this cleared up a thing or 2 for you.
The first example puts the move function in the prototype which will be shared between all Animal instances.
The second example creates a new move function for every the animal instance.
The third example generates a Animal class with the move function in the prototype similar to the first example but with allot less code.
(In your example the name is also shared between all instances, which you probably don't want)
Putting the function in the prototype makes instantiating Animals faster, and because of the way JIT engines work even the execution of the function is faster.

Strange value for the "this" object

Regarding this code:
var name = "Jaguar";
var car = {
name:"Ferrari",
getName:function(){
return this.name;
}
};
alert((car.getName = car.getName)());
The output is: Jaguar.
Why does this object correspond to Window and not the object contained in the car variable?
It seems that the fact to reassign the object's function to itself leads to lose the assignment of this to the object when the function is called...
I'm trying to guess: Does it exist a kind of mechanism (using variable or other) that keep an eye on the non-reassignement of an object's function so that if that situation happens, this mechanism would prevent the assignement of the this keyword as usual (as being equals to the object)?
The reason is fairly subtle: this in JavaScript is determined entirely by how a function is called. To have this set to car during the call to getName, you have to call getName immediately upon retrieving it from the car object, like this:
car.getName() // or
car["getName"]()
(Or via Function#call or Function#apply, which let you specify the value for this explicitly.)
What you're doing in your example is effectively this:
// Set f to the result of the assignment expression,
// which is a reference to the getName function
var f = (car.getName = car.getName);
// Call it (separately)
f();
...which is different. Functions called in that way get this set to the global object (window, in browsers). (Except in strict mode; in strict mode this would be undefined.)
More (from my anemic blog):
Mythical methods
You must remember this
Does it exist a kind of mechanism (using variable or other) that keep an eye on the non-reassignement of an object's function so that if that situation happens, this mechanism would prevent the assignement of the this keyword as usual (as being equals to the object)?
I'm not entirely sure I follow that question, but if you want to have a function that always has a preset this value, then yes, there are a couple of ways to do that.
One is to use the new ES5 function bind:
var name = "Jaguar";
var car = {
name: "Ferrari"
};
car.getName = function(){
  return this.name;
}.bind(car);
alert((car.getName = car.getName)()); // "Ferrari"
bind returns a function that always has this set to the argument you give it.
The other way is to use a closure. And in fact, you can create a bind-like function in ES3 very easily:
function pseudoBind(func, thisArg) {
return function() {
return func.apply(thisArg, arguments);
};
}
That doesn't do everything bind does, but it does the this part. Then you'd have:
var name = "Jaguar";
var car = {
name: "Ferrari"
};
car.getName = pseudoBind(function(){
  return this.name;
}, car);
alert((car.getName = car.getName)()); // "Ferrari"
More on closures (again from the blog):
Closures are not complicated
In a future spec, we'll be getting a declarative way of creating functions that have a preset this value (so-called "arrow functions" because the syntax for them involves uses => rather than the function keyword).
Aaah, this resolution...Lets take a gander.
var toy = {
log : function () { console.log(this); }
};
toy.log() //logs the toy object
So far, it seems like this resolution is static: Wherever the method was defined in, that's its this value.
But! What if we do this:
var sneakyBastard = toy.log;
sneakyBastard(); //logs Window
this is bound to the object it's called with. In the case of toy.log, you called log in the context of the toy object. But, sneakyBastard has no set context, so it's as if you've called window.sneakyBastard.
Now let's take a goose (goose? gander? no...) at your expression:
(car.getName = car.getName)()
...and what does an assignment return? The assigned value, in this case, a function, car.getName. We can break this expression into two:
var returnedValue = (car.getName = car.getName);
returnedValue();
...and from here it's obvious.
Instead of calling getName from the context of an object, you're calling it from the context of the return result of the grouping operator (which in this case there's no context).
In JavaScript, when there's no clear context defined, a default is used. The default is...
the global object when in strict mode
undefined when not in strict mode
You have put your function call parenthesis (()) so they call the result of the expression (car.getName = car.getName) (which is the value (a function) assigned to car.getName)

Difference between a constructor and an Object

I definitely need some light on this.
What's the diference between:
var MY_APP = function(){
this.firstMethod = function(){
//something
};
this.secondMethod = function(){
//something
};
};
and
var MY_APP = {
firstKey: function(){
//something
},
secondKey: function(){
//something
}
};
besides the obvious fact that one is a Function and the other an Object, what are the differences in code flow, prototypes, patterns... whatever, and when should we use the first or the second?
I'm so spaced out in this area that i'm not sure if i'm correctly explaining the doubt, but further info can be given if you ask.
The key difference between the two is in how they are intended to be used. A constructor, as its name suggests, is designed to create and set up multiple instances of an object. An object literal on the other hand is one-off, like string and number literals, and used more often as configuration objects or global singletons (e.g. for namespacing).
There are a few subtleties about the first example to note:
When the code is executed, an anonymous function is created and assigned to MY_APP, but nothing else happens. firstMethod and secondMethod don't exist until MY_APP is explicitly called.
Depending on how MY_APP is called, the methods firstMethod and secondMethod will end up in different places:
MY_APP(): Since no context is supplied, the this defaults to window and the methods will become global.
var app1 = new MY_APP(): Due to the new keyword, a new object is created and becomes the default context. this refers to the new object, and the methods will get assigned to the new object, which subsequently gets assigned to app1. However, MY_APP.firstMethod remains undefined.
MY_APP.call(YOUR_APP): This calls my MY_APP but sets the context to be another object, YOUR_APP. The methods will get assigned to YOUR_APP, overriding any properties of YOUR_APP with the same names. This is a really flexible method that allows multiple inheritance or mixins in Javascript.
Constructors also allow another level of flexibility since functions provide closures, while object literals do not. If for example firstMethod and secondMethod rely on a common variable password that is private to the object (cannot be accessed outside the constructor), this can be achieved very simply by doing:
var MY_APP = function(){
var password = "GFHSFG";
this.firstMethod = function(){
// Do something with password
alert(password); // Woops!
};
this.secondMethod = function(){
// Do something else with password
};
};
MY_APP();
alert(password); // undefined
alert(MY_APP.password); // undefined
The first is a function, the second is an object literal. Since Functions in JS are first class objects, a function can have properties on it, just like any other object can.
Typically, if you want to create a "class" that you might be familiar with from classical inheritance languages, you would do something like
function MyClass() {...}
as is documented here http://www.crockford.com/javascript/inheritance.html
To answer the question posed in your edits, you would use them both in different situations. Object literals are used to pass configurations around. A typical usage pattern would be a method that accepts an object literal like so
something.init({
length: 10,
height: 10,
text: 'some text'
});
and so on.
You could use something similar to your first example when creating a namespace. Javascript has some interesting language features in that you can have so-called "self-invoking functions" that are of the form:
var myApp = (function(){
var firstMethod = function() {...}
...
})();
the motivations behind doing something like this are detailed here
http://sparecycles.wordpress.com/2008/06/29/advanced-javascript/
You can also investigate the differences via your favorite javascript debugging console. In firebug and chrome, I did the following:
var ol = {}; ol.prototype;
var fn = function(){}; fn.prototype;
the first line prints undefined, the second returns a prototype with a constructor of 'function'
The constructor can be reused as is, the object literal would need to be repeated or wrapped in a function to be reused.
Example of wrapping the object literal in a function:
function MY_APP() {
return {
firstKey: function(){
//something
},
secondKey: function(){
//something
}
};
}
The object created using the constructor will have it's constructor property set to the constructor function. However, as you used an anonymous function assigned to a variable instead of a named function, the constructor will still be nameless.
Other than that, there isn't really any differences. Both create anonymous functions that are assigned to the properties of the object, so the resulting objects are the same. You can compare this to assigning named functions to the properties, or using prototype functions, both having the difference that each function only exists once instead of being created over and over for each object.
There is some confusion in JavaScript regarding the difference between a function and an object.
In the first case,
var MY_APP = function() { this.v = 7; ... }
or
function MY_APP(x) { this.v = x; ... }
a function is declared, not an object. In MY_APP, this refers to the global object.
Meaning that calling the function MY_APP(7) will assign v globally to the value of 7. (and in your case the function firstMethod would be declared globally).
MY_APP(3); // The global variable v is set to 3
MY_APP(4); // The global variable v is overwritten and set to 4
To use MY_APP as an object, it needs to be instantiated, for instance
var obj1 = new MY_APP(3);
var obj2 = new MY_APP(4);
will have obj1.v to be 3, and obj2.v to be 4.
Note you can also add methods using the prototype keyword (instead of this.firstMethod...)
MY_APP.prototype.firstMethod = function () { ... }
In the second case
var MY_APP = { ... };
an object, one object, is created and its name is MY_APP. The this keywords refers to that object, MY_APP.

Categories

Resources