Related
How do I calculate the bounced end point of intersecting two lines?
When given the following two lines, I was able to calculate intersection point of two lines with the following function.
export function intersection(line1, line2) {
line1.y1 *= -1; line1.y2 *= -1; // for Webpage coordinates
line2.y3 *= -1; line2.y4 *= -1; // for Webpage coordinates
const [x1, y1, x2, y2] = line1;
const [x3, y3, x4, y4] = line2;
const [a1, b1, c1] = [y2 - y1, x1 - x2, x2 * y1 - x1 * y2];
if ( a1 === 0 && b1 === 0 ) return 'line1 does not have length';
const [a2, b2, c2] = [y4 - y3, x3 - x4, x4 * y3 - x3 * y4];
if ( a2 === 0 && b2 === 0 ) return 'line2 does not have length';
const denom = a1 * b2 - a2 * b1;
if (denom === 0) return 'lines are parallel';
const x = (b1 * c2 - b2 * c1) / denom; // (x,y) is the intersection
const y = (a2 * c1 - a1 * c2) / denom;
// check if two lines are actually crossing w/o extending it
function getDist(x1, y1, x2, y2) {
return Math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2);
}
const distLine1 = getDist(x1, y1, x2, y2);
const distLine2 = getDist(x3, y3, x4, y4);
const distToXY1 = Math.max(getDist(x1, y1, x, y), getDist(x2, y2, x, y)) ;
const distToXY2 = Math.max(getDist(x3, y3, x, y), getDist(x4, y4, x, y)) ;
if (distToXY1 > distLine1 || distToXY2 > distLine2)
return 'lines does not meet';
return {x, y};
}
DEMO: https://stackblitz.com/edit/intersection-of-two-lines?file=index.js
However, I am struggling to find a bounced-off position(or reflection point) of two lines using two lines.
What's the formula of getting x/y position from line1(x1, x2, y1, y2) and line2(x1, x2, y1, y2)?
You have to split the part of the red vector that's "inside the wall" into two components, one parallel to the wall, the other perpendicular to it. Then you negate the perpendicular component and add them back together.
class Line {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
this.dx = x2 - x1;
this.dy = y2 - y1;
}
intersect(o) {
const d = this.dy * o.dx - this.dx * o.dy;
if (d === 0) return null; // parallel
const k = ((o.y1 - this.y1) * o.dx + (this.x1 - o.x1) * o.dy) / d;
return {
x: this.x1 + k * this.dx,
y: this.y1 + k * this.dy
};
}
bounce(o) {
const i = this.intersect(o);
if (!i) return null;
// vector from intersection to end
const v = {
x: this.x2 - i.x,
y: this.y2 - i.y
};
// split v into two perpendicular vectors, one parallel to o
// the perpendicular one is o's direction rotated by 90°
const p = { x: o.dy, y: -o.dx };
// v.x = a * o.dx + b * p.x
// v.y = a * o.dy + b * p.y
// division by zero is impossible since o and p are perpendicular
const a = (v.y * p.x - v.x * p.y) / (o.dy * p.x - o.dx * p.y);
const b = (v.y * o.dx - v.x * o.dy) / (p.y * o.dx - p.x * o.dy);
// negate b to mirror end of line on o
return {
x: i.x + a * o.dx - b * p.x,
y: i.y + a * o.dy - b * p.y
}
}
}
const l1 = new Line(100, 300, 400, 100);
const l2 = new Line(100, 100, 400, 300);
console.log(l1.bounce(l2));
I think I am close to an answer.
This is my approach
get a perpendicular meeting point from the intersection and end of line2.
Make a line(start: end of line2, end: perpendicular meeting point), then extend the line double amount to get the endpoint.
https://stackblitz.com/edit/intersection-of-two-lines-nes7zy?view=preview
In the demo, this approach looks fine, If a math expert can confirm this approach, it would be appreciated.
// https://stackoverflow.com/a/1811636/454252
function getPerpendicularPoint(iPoint, line1, line2) {
const [x1, y1] = [iPoint.x, iPoint.y]; // start point
const [x2, y2] = [line1[2], line1[3]]; // baseline end point
const [x3, y3] = [line2[2], line2[3]]; // extended line end point
const k = ((y2-y1) * (x3-x1) - (x2-x1) * (y3-y1)) / ((y2-y1)**2 + (x2-x1)**2);
const x4 = x3 - k * (y2-y1);
const y4 = y3 + k * (x2-x1);
return {x: x4, y: y4};
}
//http://www.java2s.com/Tutorials/Javascript/Canvas_How_to/Shape/Extend_a_line_before_and_after_original_endpoints.htm
function getExtendedPoint(startPt, endPt, extent) {
var dx = endPt.x - startPt.x;
var dy = endPt.y - startPt.y;
var x = startPt.x + dx * extent;
var y = startPt.y + dy * extent;
return {x, y};
}
let line1 = [100, 100, 400, 300];
let line2 = [100, 300, 400, 100];
const iPoint = {x: 250, y: 200}; // intersection(line1, line2);
const pPoint = getPerpendicularPoint(iPoint, line1, line2);
const ePoint = getExtendedPoint({x:line2[2], y:line2[3]}, pPoint, 2);
console.log(pPoint, ePoint);
I am trying to make a rotating zooming recursive golden triangle. It draws a golden triangle, then it draws another one inside it and so on. This was easy, but the challenge is making it zoom in and rotate around the point that the triangles are approaching.
To make it zoom in on that point infinitely I need to come up with the formula to calculate which point the triangles are approaching.
Running demo at this point: https://waltari10.github.io/recursive-golden-triangle/index.html
Repository: https://github.com/Waltari10/recursive-golden-triangle
/**
*
* #param {float[]} pivot
* #param {float} angle
* #param {float[]} point
* #returns {float[]} point
*/
function rotatePoint(pivot, angle, point)
{
const s = Math.sin(angle);
const c = Math.cos(angle);
const pointOriginX = point[0] - pivot[0];
const pointOriginY = point[1] - pivot[1];
// rotate point
const xNew = (pointOriginX * c) - (pointOriginY * s);
const yNew = (pointOriginX * s) + (pointOriginY * c);
const newPoint = [
pivot[0] + xNew,
pivot[1] + yNew,
]
return newPoint;
}
// https://www.onlinemath4all.com/90-degree-clockwise-rotation.html
// https://stackoverflow.com/questions/2259476/rotating-a-point-about-another-point-2d
// Position is half way between points B and C 72 and 72, because AB/BC is golden ratio
function drawGoldenTriangle(pos, height, rotation, color = [0,255,0,255], pivot) {
// golden triangle degrees 72, 72, 36
// golden gnomon 36, 36, 108
// AB/BC is the golden ratio number
// https://www.mathsisfun.com/algebra/sohcahtoa.html
const baseLength = (Math.tan(degToRad(18)) * height) * 2;
const pointA = rotatePoint(pos, rotation, [pos[0], pos[1] - height]); // sharpest angle
const pointB = rotatePoint(pos, rotation, [pos[0] - (baseLength / 2), pos[1]]);
const pointC = rotatePoint(pos, rotation, [pos[0] + (baseLength / 2), pos[1]]);
drawTriangle(pointA, pointB, pointC, [0,255,0,255]);
}
let i = 0;
function drawRecursiveGoldenTriangle(pos, height, rotation, pivot) {
drawGoldenTriangle(pos, height, rotation, [0,255,0,255], pivot);
i++;
if (i > 10) {
return;
}
const hypotenuseLength = height / Math.cos(degToRad(18));
const baseLength = (Math.tan(degToRad(18)) * height) * 2;
const goldenRatio = hypotenuseLength / baseLength;
const newHeight = height / goldenRatio;
const newRotation = rotation - 108 * Math.PI/180
const newPointC = rotatePoint(pos, rotation, [pos[0] + (baseLength / 2), pos[1]]);
// Go half baselength up CA direction from pointC to get new position
const newHypotenuseLength = baseLength;
const newBaseLength = newHypotenuseLength / goldenRatio;
let newPosXRelative = Math.cos(newRotation) * (newBaseLength / 2)
let newPosYRelative = Math.sin(newRotation) * (newBaseLength / 2)
const newPos = [newPointC[0] + newPosXRelative, newPointC[1] + newPosYRelative];
drawRecursiveGoldenTriangle(newPos, newHeight, newRotation, [0,255,0,255], pivot);
}
let triangleHeight = height - 50;
let pivotPoint = [(width/2),(height/2) -50];
let triangleLocation = [width/2, height/2 + 300];
let triangleRotation = 0;
function loop() {
i = 0;
const startTime = Date.now()
wipeCanvasData();
// triangleHeight++;
// triangleRotation = triangleRotation + 0.005;
// drawX(pivotPoint)
// drawX(triangleLocation)
// Pivot point determines the point which the recursive golden
// triangle rotates around. Should be the point that triangles
// approach.
drawRecursiveGoldenTriangle(triangleLocation, triangleHeight, triangleRotation, pivotPoint);
updateCanvas()
const renderTime = Date.now() - startTime
timeDelta = renderTime < targetFrameDuration ? targetFrameDuration : renderTime
this.setTimeout(() => {
loop()
}, targetFrameDuration - renderTime)
}
loop()
What would be the formula to calculate the point that recursive golden triangle is approaching? Or is there some clever hack I could do in this situation?
The starting point of the logarithmic spiral is calculated by startingPoint(a,b,c) where a,b,c are the points of your triangle:
The triangle in the snippet is not a proper 'golden triangle' but the calculations should be correct...
const distance = (p1, p2) => Math.hypot(p2.x - p1.x, p2.y - p1.y);
const intersection = (p1, p2, p3, p4) => {
const l1A = (p2.y - p1.y) / (p2.x - p1.x);
const l1B = p1.y - l1A * p1.x;
const l2A = (p4.y - p3.y) / (p4.x - p3.x);
const l2B = p3.y - l2A * p3.x;
const x = (l2B - l1B) / (l1A - l2A);
const y = x * l1A + l1B;
return {x, y};
}
const startingPoint = (a, b, c) => {
const ac = distance(a, c);
const ab = distance(a, b);
const bc = distance(b, c);
// Law of cosines
const alpha = Math.acos((ab * ab + ac * ac - bc * bc) / (2 * ab * ac));
const gamma = Math.acos((ac * ac + bc * bc - ab * ab) / (2 * ac * bc));
const delta = Math.PI - alpha / 2 - gamma;
// Law of sines
const cd = ac * Math.sin(alpha / 2) / Math.sin(delta);
const d = {
x: cd * (b.x - c.x) / bc + c.x,
y: cd * (b.y - c.y) / bc + c.y
};
const e = {
x: (a.x + c.x) / 2,
y: (a.y + c.y) / 2
};
const f = {
x: (a.x + b.x) / 2,
y: (a.y + b.y) / 2,
};
return intersection(c, f, d, e);
};
d3.select('svg').append('path')
.attr('d', 'M 100,50 L150,200 H 50 Z')
.style('fill', 'none')
.style('stroke', 'blue')
const point = startingPoint({x: 50, y: 200},{x: 100, y: 50},{x: 150, y: 200});
console.log(point);
d3.select('svg').append('circle')
.attr('cx', point.x)
.attr('cy', point.y)
.attr('r', 5)
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.7.0/d3.min.js"></script>
<svg width="200" height="400"></svg>
for a game I'm building, I need to draw a rectangle on two sides of a line made from two coordinates.
I have an image illustrating this "hard to ask" question.
given coordinates (-4,3) and (3, -4)
given that the width of the rectangle will be 4 (for example)
I need to find all (x1, y1), (x2, y2), (x3, y3), (x4, y4)
** I need to write this in Javascript eventually.
your help is much appreciated.
I've tried to solve this using javascript & canvas. The problem is that the coordinates in canvas are upside down, I suppose you already know this. Also since your rect would be extremely small, I've multiplied your numbers by 10.
const canvas = document.querySelector("canvas");
const ctx = canvas.getContext("2d");
let cw = canvas.width = 300,
cx = cw / 2;
let ch = canvas.height = 300,
cy = ch / 2;
const rad = Math.PI / 180;
ctx.translate(cx,cy)
//axis
ctx.strokeStyle = "#d9d9d9";
ctx.beginPath();
ctx.moveTo(-cx,0);
ctx.lineTo(cx,0);
ctx.moveTo(0,-cy);
ctx.lineTo(0,cy);
ctx.stroke();
// your data
let p1={x:-40,y:30};
let p2={x:30,y:-40};
// the angle of the initial line
let angle = Math.atan2(p2.y-p1.y, p2.x-p1.x);
// the center of the line
let c =
{ x: p1.x + (p2.x - p1.x)/2,
y: p1.y + (p2.y - p1.y)/2
}
let w = dist(p1, p2);//the width of the rect
let h = 60;//the height of the rect
// draw the initial line
line(p1,p2);
// draw the center as a red point
marker(c);
// calculate the opoints of the rect
function rectPoints(w,h){
let p1 = {
x : c.x -w/2,
y : c.y -h/2
}
let p2 = {
x : c.x + w/2,
y : c.y -h/2
}
let p3 = {
x : c.x + w/2,
y : c.y +h/2
}
let p4 = {
x : c.x -w/2,
y : c.y +h/2
}
// this rotate all the points relative to the center c
return [
rotate(p1,c, angle),
rotate(p2,c, angle),
rotate(p3,c, angle),
rotate(p4,c, angle)
]
}
// draw the rect
ctx.strokeStyle = "blue";
drawRect(rectPoints(w,h));
// some helpful functions
function line(p1,p2){
ctx.beginPath();
ctx.moveTo(p1.x,p1.y);
ctx.lineTo(p2.x,p2.y);
ctx.stroke();
}
function dist(p1, p2) {
let dx = p2.x - p1.x;
let dy = p2.y - p1.y;
return Math.sqrt(dx * dx + dy * dy);
}
function marker(p,color){
ctx.beginPath();
ctx.fillStyle = color || "red";
ctx.arc(p.x,p.y,4,0,2*Math.PI);
ctx.fill();
}
function rotate(p,c, angle){
let cos = Math.cos(angle);
let sin = Math.sin(angle);
return {
x: c.x + (p.x - c.x) * cos - (p.y - c.y) * sin,
y: c.y + (p.x - c.x) * sin + (p.y - c.y) * cos
}
}
function drawRect(points){
ctx.beginPath();
ctx.moveTo(points[0].x,points[0].y);
ctx.lineTo(points[1].x,points[1].y);
ctx.lineTo(points[2].x,points[2].y);
ctx.lineTo(points[3].x,points[3].y);
ctx.lineTo(points[0].x,points[0].y);
ctx.closePath();
ctx.stroke();
}
canvas{border:1px solid #d9d9d9}
<canvas></canvas>
Points A, B form vector
M.X = B.X - A.X
M.Y = B.Y - A.Y
Perpendicular vector
P.X = -M.Y
P.Y = M.X
Length of P:
Len = Math.sqrt(P.X*P.X + P.Y*P.Y)
Normalized (unit) perpendicular:
uP.X = P.X / Len
uP.Y = P.Y / Len
Points
X1 = A.X + uP.X * HalfWidth
Y1 = A.Y + uP.Y * HalfWidth
(X4, Y4) = (A.X - uP.X * HalfWidth, A.Y - uP.Y * HalfWidth)
and similar for points 2 and 3 around B
Edit
Here's a new version which correctly applies the length and model but doesn't position the model correctly. I figured it might help.
http://codepen.io/pixelass/pen/78f9e97579f99dc4ae0473e33cae27d5?editors=001
I have 2 canvas instances
model
result
On the model view the user can drag the handles to modify the model
The result view should then apply the model to every segment (relatively)
This is just a basic l-system logic for fractal curves though I am having problems applying the model to the segments.
Se the picture below: The red lines should replicate the model, but I can't figure out how to correctly apply the logic
I have a demo version here: http://codepen.io/pixelass/pen/c4d7650af7ce4901425b326ad7a4b259
ES6
// simplify Math
'use strict';
Object.getOwnPropertyNames(Math).map(function(prop) {
window[prop] = Math[prop];
});
// add missing math functions
var rad = (degree)=> {
return degree * PI / 180;
};
var deg = (radians)=> {
return radians * 180 / PI;
};
// get our drawing areas
var model = document.getElementById('model');
var modelContext = model.getContext('2d');
var result = document.getElementById('result');
var resultContext = result.getContext('2d');
var setSize = function setSize() {
model.height = 200;
model.width = 200;
result.height = 400;
result.width = 400;
};
// size of the grabbing dots
var dotSize = 5;
// flag to determine if we are grabbing a point
var grab = -1;
// set size to init instances
setSize();
//
var iterations = 1;
// define points
// this only defines the initial model
var returnPoints = function returnPoints(width) {
return [{
x: 0,
y: width
}, {
x: width / 3,
y: width
}, {
x: width / 2,
y: width / 3*2
}, {
x: width / 3 * 2,
y: width
}, {
x: width,
y: width
}];
};
// set initial state for model
var points = returnPoints(model.width);
// handle interaction
// grab points only if hovering
var grabPoint = function grabPoint(e) {
var X = e.layerX;
var Y = e.layerY;
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
model.classList.add('grabbing');
grab = i;
}
}
};
// release point
var releasePoint = function releasePoint(e) {
if (grab > -1) {
model.classList.add('grab');
model.classList.remove('grabbing');
}
grab = -1;
};
// set initial state for result
// handle mouse movement on the model canvas
var handleMove = function handleMove(e) {
// determine current mouse position
var X = e.layerX;
var Y = e.layerY;
// clear classes
model.classList.remove('grabbing');
model.classList.remove('grab');
// check if hovering a dot
for (var i = 1; i < points.length - 1; i++) {
if (abs(X - points[i].x) < dotSize && abs(Y - points[i].y) < dotSize) {
// indicate grabbable
model.classList.add('grab');
}
}
// if grabbing
if (grab > -1) {
// indicate grabbing
model.classList.add('grabbing');
// modify dot on the model canvas
points[grab] = {
x: X,
y: Y
};
// modify dots on the result canvas
drawSegment({
x: points[grab - 1].x,
y: points[grab - 1].y
}, {
x: X,
y: Y
});
}
};
let m2 = points[1].x / points[4].x
let m3 = points[2].x / points[4].x
let m4 = points[3].x / points[4].x
let n2 = points[1].y / points[4].y
let n3 = points[2].y / points[4].y
let n4 = points[3].y / points[4].y
var drawSegment = function drawSegment(start, end) {
var dx = end.x - start.x
var dy = end.y - start.y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = end.x
let y1 = end.y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
resultContext.srtokeStyle = 'red'
resultContext.beginPath()
resultContext.moveTo(x1, y1)
resultContext.lineTo(x2, y2)
resultContext.stroke()
m2 = points[1].x / points[4].x
m3 = points[2].x / points[4].x
m4 = points[3].x / points[4].x
n2 = points[1].y / points[4].y
n3 = points[2].y / points[4].y
n4 = points[3].y / points[4].y
};
var drawDots = function drawDots(points) {
// draw dots
for (var i = 1; i < points.length - 1; i++) {
modelContext.lineWidth = 4; //
modelContext.beginPath();
modelContext.strokeStyle = 'hsla(' + 360 / 5 * i + ',100%,40%,1)';
modelContext.fillStyle = 'hsla(0,100%,100%,1)';
modelContext.arc(points[i].x, points[i].y, dotSize, 0, 2 * PI);
modelContext.stroke();
modelContext.fill();
}
};
var drawModel = function drawModel(ctx, points, n) {
var dx = points[1].x - points[0].x
var dy = points[1].y - points[0].y
var dist = sqrt(dx * dx + dy * dy)
var angle = atan2(dy, dx)
let x1 = points[1].x
let y1 = points[1].y
let x2 = round(cos(angle) * dist)
let y2 = round(sin(angle) * dist)
ctx.strokeStyle = 'hsla(0,0%,80%,1)';
ctx.lineWidth = 1;
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
ctx.strokeStyle = 'hsla(100,100%,80%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke()
if (n > 0 ) {
drawModel(resultContext, [{
x: points[0].x,
y: points[0].y
}, {
x: points[1].x * m2,
y: points[1].y * n2
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m2,
y: points[1].y * n2
}, {
x: points[1].x * m3,
y: points[1].y * n3
}], n - 1);
/*
drawModel(resultContext, [{
x: points[1].x * m3,
y: points[1].y * m3
}, {
x: points[1].x * m4,
y: points[1].y * n4
}], n - 1);
drawModel(resultContext, [{
x: points[1].x * m4,
y: points[1].y * m4
}, {
x: points[1].x,
y: points[1].y
}], n - 1);*/
} else {
ctx.strokeStyle = 'hsla(0,100%,50%,1)';
ctx.beginPath();
ctx.moveTo(points[0].x,
points[0].y)
ctx.lineTo(points[1].x * m2,
points[1].y * n2)
ctx.lineTo(points[1].x * m3,
points[1].y * n3)
ctx.lineTo(points[1].x * m4,
points[1].y * n4)
ctx.lineTo(points[1].x,
points[1].y)
ctx.stroke();
}
};
var draw = function draw() {
// clear both screens
modelContext.fillStyle = 'hsla(0,0%,100%,.5)';
modelContext.fillRect(0, 0, model.width, model.height);
resultContext.fillStyle = 'hsla(0,0%,100%,1)';
resultContext.fillRect(0, 0, result.width, result.height);
// draw model
drawModel(modelContext, [{
x: 0,
y: 200
}, {
x: 200,
y: 200
}]);
drawModel(resultContext, [{
x: 0,
y: 400
}, {
x: 400,
y: 400
}],iterations);
// draw the dots to indicate grabbing points
drawDots(points);
// redraw
requestAnimationFrame(draw);
};
window.addEventListener('resize', setSize);
model.addEventListener('mousemove', handleMove);
model.addEventListener('mousedown', grabPoint);
window.addEventListener('mouseup', releasePoint);
setSize();
draw();
Write a function to transform a point given the point, an old origin (the start of the model line segment), a new origin (the start of the child line segment), an angle and a scale (you have already calculated these):
var transformPoint = function transformPoint(point, oldOrigin, newOrigin, angle, dist) {
// subtract old origin to rotate and scale relative to it:
var x = point.x - oldOrigin.x;
var y = point.y - oldOrigin.y;
// rotate by angle
var sine = sin(angle)
var cosine = cos(angle)
var rotatedX = (x * cosine) - (y * sine);
var rotatedY = (x * sine) + (y * cosine);
// scale
rotatedX *= dist;
rotatedY *= dist;
// offset by new origin and return:
return {x: rotatedX + newOrigin.x - oldOrigin.x, y: rotatedY + newOrigin.y - oldOrigin.y }
}
You need to translate it by the old origin (so that you can rotate around it), then rotate, then scale, then translate by the new origin. Then return the point.
modelLogic[0] is the old origin because it defines the start of the segment in the model and points[0] is the new origin because that is what it is mapped to by the transformation.
You can call the function from your drawModel function like this:
let p1 = transformPoint(modelLogic[0], modelLogic[0], points[0], angle, dist);
let p2 = transformPoint(modelLogic[1], modelLogic[0], points[0], angle, dist);
let p3 = transformPoint(modelLogic[2], modelLogic[0], points[0], angle, dist);
let p4 = transformPoint(modelLogic[3], modelLogic[0], points[0], angle, dist);
let p5 = transformPoint(modelLogic[4], modelLogic[0], points[0], angle, dist);
and change your drawing code to use the returned points p1, p2 etc instead of x1, y1, x2, y2 etc.
Alternatively, you can create a single matrix to represent all of these translation, rotation and scaling transforms and transform each point by it in turn.
I'm looking for a definitive answer, maybe a function cos I'm slow, that will determine if a line segment and circle have collided, in javascript (working with canvas)
A function like the one below that simply returns true if collided or false if not would be awesome. I might even donate a baby to you.
function isCollided(lineP1x, lineP1y, lineP2x, lineP2y, circlex, circley, radius) {
...
}
I've found plenty of formulas, like this one, but they are over my head.
Here you will need some Math:
This is the basic concept if you don't know how to solve equations in general. I will leave the rest of the thinking to you. ;) Figuring out CD's length isn't that hard.
If you are asking how, that's how:
Finding collisions in JavaScript is kind of complicated.
I Spent about a day and a half to make it perfect.. Hope this helps.
function collisionCircleLine(circle,line){ // Both are objects
var side1 = Math.sqrt(Math.pow(circle.x - line.p1.x,2) + Math.pow(circle.y - line.p1.y,2)); // Thats the pythagoras theoram If I can spell it right
var side2 = Math.sqrt(Math.pow(circle.x - line.p2.x,2) + Math.pow(circle.y - line.p2.y,2));
var base = Math.sqrt(Math.pow(line.p2.x - line.p1.x,2) + Math.pow(line.p2.y - line.p1.y,2));
if(circle.radius > side1 || circle.radius > side2)
return true;
var angle1 = Math.atan2( line.p2.x - line.p1.x, line.p2.y - line.p1.y ) - Math.atan2( circle.x - line.p1.x, circle.y - line.p1.y ); // Some complicated Math
var angle2 = Math.atan2( line.p1.x - line.p2.x, line.p1.y - line.p2.y ) - Math.atan2( circle.x - line.p2.x, circle.y - line.p2.y ); // Some complicated Math again
if(angle1 > Math.PI / 2 || angle2 > Math.PI / 2) // Making sure if any angle is an obtuse one and Math.PI / 2 = 90 deg
return false;
// Now if none are true then
var semiperimeter = (side1 + side2 + base) / 2;
var areaOfTriangle = Math.sqrt( semiperimeter * (semiperimeter - side1) * (semiperimeter - side2) * (semiperimeter - base) ); // Heron's formula for the area
var height = 2*areaOfTriangle/base;
if( height < circle.radius )
return true;
else
return false;
}
And that is how you do it..
Matt DesLauriers published a Javascript library for this problem at https://www.npmjs.com/package/line-circle-collision. The API is straightforward:
var circle = [5, 5],
radius = 25,
a = [5, 6],
b = [10, 10]
var hit = collide(a, b, circle, radius)
function pointCircleCollide(point, circle, r) {
if (r===0) return false
var dx = circle[0] - point[0]
var dy = circle[1] - point[1]
return dx * dx + dy * dy <= r * r
}
var tmp = [0, 0]
function lineCircleCollide(a, b, circle, radius, nearest) {
//check to see if start or end points lie within circle
if (pointCircleCollide(a, circle, radius)) {
if (nearest) {
nearest[0] = a[0]
nearest[1] = a[1]
}
return true
} if (pointCircleCollide(b, circle, radius)) {
if (nearest) {
nearest[0] = b[0]
nearest[1] = b[1]
}
return true
}
var x1 = a[0],
y1 = a[1],
x2 = b[0],
y2 = b[1],
cx = circle[0],
cy = circle[1]
//vector d
var dx = x2 - x1
var dy = y2 - y1
//vector lc
var lcx = cx - x1
var lcy = cy - y1
//project lc onto d, resulting in vector p
var dLen2 = dx * dx + dy * dy //len2 of d
var px = dx
var py = dy
if (dLen2 > 0) {
var dp = (lcx * dx + lcy * dy) / dLen2
px *= dp
py *= dp
}
if (!nearest)
nearest = tmp
nearest[0] = x1 + px
nearest[1] = y1 + py
//len2 of p
var pLen2 = px * px + py * py
//check collision
return pointCircleCollide(nearest, circle, radius)
&& pLen2 <= dLen2 && (px * dx + py * dy) >= 0
}
var circle = [5, 5],
radius = 25,
a = [5, 6],
b = [10, 10]
var hit = lineCircleCollide(a, b, circle, radius)