new to javascript code and having some issues already - javascript

i have this code: the idea is to print the list of the 10 random numbers and then add 6 to each item on the list and finally print new list with the new numbers after the additions: I've tried several modification but all of them are failing, any ideas??
var myArray = [];
appendItem(myArray, randomNumber(1,10));
appendItem(myArray, randomNumber(1,10));
appendItem(myArray, randomNumber(1,10));
appendItem(myArray, randomNumber(1,10));
console.log("Before: " + myArray);
for (var i = 0; i < myArray.lenght; i++) {
myArray = [i] + 5;
}
console.log("After: " + myArray);

one solution can be
let myArray = []
for (let i = 0 ; i < 5 ; i++) {
myArray.push(Math.floor(Math.random() * 10) + 5);
}
console.log(myArray)

A couple of things to help you along your way...
It looks like you're using borrowed code somewhere, because randomNumber is not a native JavaScript function.
So, first to get a random number, you can read more about Math.random() here: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
Math.random() natively provides a decimal number between 0 and 1 (0.4, 0.67, 0.321 ...) To get a range, you multiply your answer by the maximum number for the range. And then commonly you want to wrap that in a Math.floor() method to trim the decimal points (this is just a Math method that all it does is trim off anything that's a decimal point and provides a whole number)
W3C is a good place to start to read up about arrays:
https://www.w3schools.com/js/js_arrays.asp
The common convention for adding elements to an array is to use .push() but you can look into .pop() and .filter() and .map() and there's just a ton of helpful methods attached to JavaScript arrays :)
/*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
*/
let originalArray = [];
let plusSixArray = [];
let max = 10; // set the range for your random number
// max = 10 will let the range be from 0 - 9
// max = 273 will let the range be from 0 - 272
for( var i=0; i<10; i++ ){
let number = Math.floor(Math.random() * max) + 1;
// adding 1 to the end gives you a range between 1 - 10
originalArray.push( number );
// since you're already in a loop, just add the 6
plusSixArray.push( number + 6 );
}
console.log( originalArray );
console.log( plusSixArray );

Related

Get Random Value Either 1 or 3 in JavaScript

Can you please let me know how I can create Random 1 or 3 (not Range, only 1 or 3) on each load of document? I already tried this but it returns String instead of numbers.Should I have to parse them to numbers or is there a better way to do this?
var num = [];
var chances = "13";
for (var i = 0; i <1; i++) {
num.push(chances.charAt(Math.floor(Math.random() * chances.length)));
}
console.log(num);
Since Math.random returns a number between 0 (inclusive) and 1 (exclusive):
var value = Math.random() < 0.5 ? 1 : 3;
That said, note that your chances string doesn't have a character at index 3, it's only two characters long, and their indexes are 0 and 1. So if you really want to randomly pick from those two characters, as your code seems to suggest, what you really want is:
var value = Math.random() < 0.5 ? 0 : 1;
or
var value = Math.floor(Math.random() * 2);
...although your code using chances.length is just fine (since chances.length is 2).
Also note that for (var i = 0; i < 1; i++) will only run exactly once, making the loop somewhat pointless. :-)

wait for while loop to end before executing code

I am trying to retrieve data from an object, I generate 3 random numbers from 1-9 and then pick out data from a json object using these random numbers. However it sometimes works and then sometimes doesn't, I think it might be because it doesn't wait for the random numbers to be generated before selecting data from the object, it all occurs on page load:
the jsfiddle:
http://jsfiddle.net/dbqw79j4/1/
the code:
var jsonfile =[
{
"id" : "article1",
"image" : "http://images.domain.com/is/image/boss/BOSS_london_bridge_skyline?$c_overview_large$",
"headline" : "<h2>EIN TAG IN LONDON<span class='h2'>MIT LEWIS HAMILTON</span></h2>"
},
{
"id" : "article2",
"image" : "http://images.domain.com/is/image/boss/FAB_5819?$c_overview_large$",
"headline" : "<h2>EIN TAG IN MONACO<span class='h2'>MIT NICO ROSBERG</span></h2>"
},
...
]
var arr = []
var article1;
var article2;
var article3;
var art1hd;
var art1img;
var art2hd;
var art2img;
var art3hd;
var art3img;
while(arr.length < 3){
var randomnumber=Math.ceil(Math.random()*9)
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break}
}
if(!found)arr[arr.length]=randomnumber;
}
console.log(arr);
console.log(arr[0]);
console.log(arr[1]);
console.log(arr[2]);
article1 = arr[0];
article2 = arr[1];
article3 = arr[2];
console.log(article1)
console.log(article2)
console.log(article3)
art1hd = jsonfile[article1]['headline'];
art1img = jsonfile[article1]['image'];
art2hd = jsonfile[article2]['headline'];
art2img = jsonfile[article2]['image'];
art3hd = jsonfile[article3]['headline'];
art3img = jsonfile[article3]['image'];
console.log(art1hd)
console.log(art1img)
console.log(art2hd)
console.log(art2img)
console.log(art3hd)
console.log(art3img)
You generate random numbers from range of 0-9 and your array contains only 9 elements and it is indexed from 0-8
You should use:
while(arr.length < 3){
var randomnumber=Math.ceil(Math.random()*8)
var found=false;
for(var i=0;i<arr.length;i++){
if(arr[i]==randomnumber){found=true;break}
}
if(!found)arr[arr.length]=randomnumber;
}
The problem is, your "jsonfile" array has nine elements. this breaks when you generate the random number 9, as arrays are zero-based, the valid values for indexing the array are 0-8
Math.ceil() is never the right function to generate an integer result based on Math.random() times something as this code does:
var randomnumber = Math.ceil( Math.random() * 9 );
You should always use Math.floor() in code like this instead. If you don't want your range to start with 0, then add the range base after doing the Math.floor().
In other words, if you want a random integer in the range 1 through 9 inclusive, this is the correct way to do it:
var randomnumber = Math.floor( Math.random() * 9 ) + 1;
Why is this? It's important to understand that Math.random() produces a value that is greater than or equal to 0, and less than (but never equal to) 1.
So Math.random() * 9 gives a value that is always less than 9 (and never equal to 9). If you take Math.floor() on that, you now have an integer in the range 0 through 8 inclusive.
Add 1 to that, and you have your desired range of 1 through 9.
Many JavaScript references fail to describe Math.random() clearly. Just keep in mind that its result is in the range 0 <= Math.random() < 1.
So, what could go wrong if you used Math.ceil()? Going back to the original example:
var randomnumber = Math.ceil( Math.random() * 9 );
What this code actually does is generates a number in the range 0 through 9, not 1 through 9. Now the chance of getting a 0 result is extremely small: it would be fairly rare for Math.random() to return 0, but it can happen. By using Math.floor() instead, you insure that the result is always in the desired range.
That said, as suvroc points out, you're (eventually) using this value as an index into an array of 9 elements, therefore the range you want is actually 0 through 8. So the code should be:
var randomnumber = Math.floor( Math.random() * 9 );
It is, because the random number generator can generate the number 9, but your jsonfile has only 9 elements, so the last index is 8.
First, as others said the random number generated as to be :
Math.floor(Math.random()*9)
Then I reviewed the code to be sure of synchronicity :
http://jsfiddle.net/dbqw79j4/6/
I did a recursive function who calls logs on arr.length >= 3 and add a random number if it doesn't exists on arr.

Fibonacci Sequence - Find the number of digits - JavaScript

So, I have successfully written the Fibonacci sequence to create an array with the sequence of numbers, but I need to know the length (how many digits) the 500th number has.
I've tried the below code, but its finding the length of the scientific notation (22 digits), not the proper 105 it should be returning.
Any ideas how to convert a scientific notation number into an actual integer?
var fiblength = function fiblength(nth) {
var temparr = [0,1];
for(var i = 2; i<=nth; i++){
var prev = temparr[temparr.length-2],
cur = temparr[temparr.length-1],
next = prev + cur;
temparr.push(next);
}
var final = temparr[temparr.length-1].toString().length;
console.log(temparr[temparr.length-1]);
return final;
};
a = fiblength(500);
console.log(a);
Why not use the simple procedure of dividing the number by 10 until the number is less than 1.
Something as simple as this should work (a recursive def obv works as well)
function getDigits(n) {
var digits = 0;
while(n >= 1) {
n/=10;
digits += 1;
}
return digits;
}
getDigits(200);//3
getDigits(3.2 * 10e20);//=>22
Here's a solution in constant time:
function fiblength(n) {
return Math.floor((n>1)?n*.2089+.65051:1);
}
Let's explain how I arrived to it.
All previous solutions will probably not work for N>300 unless you have a BigNumber library in place. Also they're pretty inneficient.
There is a formula to get any Fibonacci number, which uses PHI (golden ratio number), it's very simple:
F(n) = ABS((PHI^n)/sqrt(5))
Where PHI=1.61803399 (golden ratio, found all over the fibonacci sequence)
If you want to know how many digits a number has, you calculate the log base 10 and add 1 to that. Let's call that function D(n) = log10(n) + 1
So what you want fiblength to be is in just the following function
fiblength(n) = D(F(n)) // number of digits of a fibonacci number...
Let's work it out, so you see what the one liner code will be like once you use math.
Substitute F(n)
fiblength(n) = D(ABS((PHI^n)/sqrt(5)))
Now apply D(n) on that:
fiblength(n) = log10(ABS((PHI^n)/sqrt(5))) + 1
So, since log(a/b) = log(a) - log(b)
fiblength(n) = log10(ABS((PHI^n))) - log10(sqrt(5))) + 1
and since log(a^n) = n * log(a)
fiblength(n) = n*log10(PHI) - log10(sqrt(5))) + 1
Then we evaluate those logarithms since they're all on constants
and add the special cases of n=0 and n=1 to return 1
function fiblength(n) {
return Math.floor((n>1)?n*.2089+.65051:1);
}
Enjoy :)
fiblength(500) => 105 //no iterations necessary.
Most of the javascript implementations, internally use 64 bit numbers. So, if the number we are trying to represent is very big, it uses scientific notation to represent those numbers. So, there is no pure "javascript numbers" based solution for this. You may have to look for other BigNum libraries.
As far as your code is concerned, you want only the 500th number, so you don't have to store the entire array of numbers in memory, just previous and current numbers are enough.
function fiblength(nth) {
var previous = 0, current = 1, temp;
for(var i = 2; i<=nth; i++){
temp = current;
current = previous + current;
previous = temp;
}
return current;
};
My Final Solution
function fiblength(nth) {
var a = 0, b = 1, c;
for(var i=2;i<=nth;i++){
c=b;
b=a+b;
a=c;
}
return Math.floor(Math.log(b)/Math.log(10))+1;
}
console.log(fiblength(500));
Thanks for the help!!!
The problem is because the resulting number was converted into a string before any meaningful calculations could be made. Here's how it could have been solved in the original code:
var fiblength = function fiblength(nth) {
var temparr = [0,1];
for(var i = 2; i<=nth; i++){
var prev = temparr[temparr.length-2],
cur = temparr[temparr.length-1],
next = prev + cur;
temparr.push(next);
}
var x = temparr[temparr.length-1];
console.log(x);
var length = 1;
while (x > 1) {
length = length + 1;
x = x/10;
}
return length;
};
console.log ( fiblength(500) );

How can I find the length of a number?

I'm looking to get the length of a number in JavaScript or jQuery?
I've tried value.length without any success, do I need to convert this to a string first?
var x = 1234567;
x.toString().length;
This process will also work forFloat Number and for Exponential number also.
Ok, so many answers, but this is a pure math one, just for the fun or for remembering that Math is Important:
var len = Math.ceil(Math.log(num + 1) / Math.LN10);
This actually gives the "length" of the number even if it's in exponential form. num is supposed to be a non negative integer here: if it's negative, take its absolute value and adjust the sign afterwards.
Update for ES2015
Now that Math.log10 is a thing, you can simply write
const len = Math.ceil(Math.log10(num + 1));
Could also use a template string:
const num = 123456
`${num}`.length // 6
You have to make the number to string in order to take length
var num = 123;
alert((num + "").length);
or
alert(num.toString().length);
I've been using this functionality in node.js, this is my fastest implementation so far:
var nLength = function(n) {
return (Math.log(Math.abs(n)+1) * 0.43429448190325176 | 0) + 1; 
}
It should handle positive and negative integers (also in exponential form) and should return the length of integer part in floats.
The following reference should provide some insight into the method:
Weisstein, Eric W. "Number Length." From MathWorld--A Wolfram Web Resource.
I believe that some bitwise operation can replace the Math.abs, but jsperf shows that Math.abs works just fine in the majority of js engines.
Update: As noted in the comments, this solution has some issues :(
Update2 (workaround) : I believe that at some point precision issues kick in and the Math.log(...)*0.434... just behaves unexpectedly. However, if Internet Explorer or Mobile devices are not your cup of tea, you can replace this operation with the Math.log10 function. In Node.js I wrote a quick basic test with the function nLength = (n) => 1 + Math.log10(Math.abs(n) + 1) | 0; and with Math.log10 it worked as expected. Please note that Math.log10 is not universally supported.
There are three way to do it.
var num = 123;
alert(num.toString().length);
better performance one (best performance in ie11)
var num = 123;
alert((num + '').length);
Math (best performance in Chrome, firefox but slowest in ie11)
var num = 123
alert(Math.floor( Math.log(num) / Math.LN10 ) + 1)
there is a jspref here
http://jsperf.com/fastest-way-to-get-the-first-in-a-number/2
You should go for the simplest one (stringLength), readability always beats speed. But if you care about speed here are some below.
Three different methods all with varying speed.
// 34ms
let weissteinLength = function(n) {
return (Math.log(Math.abs(n)+1) * 0.43429448190325176 | 0) + 1;
}
// 350ms
let stringLength = function(n) {
return n.toString().length;
}
// 58ms
let mathLength = function(n) {
return Math.ceil(Math.log(n + 1) / Math.LN10);
}
// Simple tests below if you care about performance.
let iterations = 1000000;
let maxSize = 10000;
// ------ Weisstein length.
console.log("Starting weissteinLength length.");
let startTime = Date.now();
for (let index = 0; index < iterations; index++) {
weissteinLength(Math.random() * maxSize);
}
console.log("Ended weissteinLength length. Took : " + (Date.now() - startTime ) + "ms");
// ------- String length slowest.
console.log("Starting string length.");
startTime = Date.now();
for (let index = 0; index < iterations; index++) {
stringLength(Math.random() * maxSize);
}
console.log("Ended string length. Took : " + (Date.now() - startTime ) + "ms");
// ------- Math length.
console.log("Starting math length.");
startTime = Date.now();
for (let index = 0; index < iterations; index++) {
mathLength(Math.random() * maxSize);
}
First convert it to a string:
var mynumber = 123;
alert((""+mynumber).length);
Adding an empty string to it will implicitly cause mynumber to turn into a string.
Well without converting the integer to a string you could make a funky loop:
var number = 20000;
var length = 0;
for(i = number; i > 1; ++i){
++length;
i = Math.floor(i/10);
}
alert(length);​
Demo: http://jsfiddle.net/maniator/G8tQE/
I got asked a similar question in a test.
Find a number's length without converting to string
const numbers = [1, 10, 100, 12, 123, -1, -10, -100, -12, -123, 0, -0]
const numberLength = number => {
let length = 0
let n = Math.abs(number)
do {
n /= 10
length++
} while (n >= 1)
return length
}
console.log(numbers.map(numberLength)) // [ 1, 2, 3, 2, 3, 1, 2, 3, 2, 3, 1, 1 ]
Negative numbers were added to complicate it a little more, hence the Math.abs().
I'm perplex about converting into a string the given number because such an algorithm won't be robust and will be prone to errors: it will show all its limitations especially in case it has to evaluate very long numbers. In fact before converting the long number into a string it will "collapse" into its exponential notation equivalent (example: 1.2345e4). This notation will be converted into a string and this resulting string will be evaluated for returning its length. All of this will give a wrong result. So I suggest not to use that approach.
Have a look at the following code and run the code snippet to compare the different behaviors:
let num = 116234567891011121415113441236542134465236441625344625344625623456723423523429798771121411511034412365421344652364416253446253446254461253446221314623879235441623683749283441136232514654296853446323214617456789101112141511344122354416236837492834411362325146542968534463232146172368374928344113623251465429685;
let lenFromMath;
let lenFromString;
// The suggested way:
lenFromMath = Math.ceil(Math.log10(num + 1)); // this works in fact returns 309
// The discouraged way:
lenFromString = String(num).split("").length; // this doesn't work in fact returns 23
/*It is also possible to modify the prototype of the primitive "Number" (but some programmer might suggest this is not a good practice). But this is will also work:*/
Number.prototype.lenght = () => {return Math.ceil(Math.log10(num + 1));}
lenFromPrototype = num.lenght();
console.log({lenFromMath, lenFromPrototype, lenFromString});
A way for integers or for length of the integer part without banal converting to string:
var num = 9999999999; // your number
if (num < 0) num = -num; // this string for negative numbers
var length = 1;
while (num >= 10) {
num /= 10;
length++;
}
alert(length);
I would like to correct the #Neal answer which was pretty good for integers, but the number 1 would return a length of 0 in the previous case.
function Longueur(numberlen)
{
var length = 0, i; //define `i` with `var` as not to clutter the global scope
numberlen = parseInt(numberlen);
for(i = numberlen; i >= 1; i)
{
++length;
i = Math.floor(i/10);
}
return length;
}
To get the number of relevant digits (if the leading decimal part is 0 then the whole part has a length of 0) of any number separated by whole part and decimal part I use:
function getNumberLength(x) {
let numberText = x.toString();
let exp = 0;
if (numberText.includes('e')) {
const [coefficient, base] = numberText.split('e');
exp = parseInt(base, 10);
numberText = coefficient;
}
const [whole, decimal] = numberText.split('.');
const wholeLength = whole === '0' ? 0 : whole.length;
const decimalLength = decimal ? decimal.length : 0;
return {
whole: wholeLength > -exp ? wholeLength + exp : 0,
decimal: decimalLength > exp ? decimalLength - exp : 0,
};
}
var x = 1234567;
String(x).length;
It is shorter than with .toString() (which in the accepted answer).
Try this:
$("#element").text().length;
Example of it in use
Yes you need to convert to string in order to find the length.For example
var x=100;// type of x is number
var x=100+"";// now the type of x is string
document.write(x.length);//which would output 3.

Generating unique random numbers (integers) between 0 and 'x'

I need to generate a set of unique (no duplicate) integers, and between 0 and a given number.
That is:
var limit = 10;
var amount = 3;
How can I use Javascript to generate 3 unique numbers between 1 and 10?
Use the basic Math methods:
Math.random() returns a random number between 0 and 1 (including 0, excluding 1).
Multiply this number by the highest desired number (e.g. 10)
Round this number downward to its nearest integer
Math.floor(Math.random()*10) + 1
Example:
//Example, including customisable intervals [lower_bound, upper_bound)
var limit = 10,
amount = 3,
lower_bound = 1,
upper_bound = 10,
unique_random_numbers = [];
if (amount > limit) limit = amount; //Infinite loop if you want more unique
//Natural numbers than exist in a
// given range
while (unique_random_numbers.length < limit) {
var random_number = Math.floor(Math.random()*(upper_bound - lower_bound) + lower_bound);
if (unique_random_numbers.indexOf(random_number) == -1) {
// Yay! new random number
unique_random_numbers.push( random_number );
}
}
// unique_random_numbers is an array containing 3 unique numbers in the given range
Math.floor(Math.random() * (limit+1))
Math.random() generates a floating point number between 0 and 1, Math.floor() rounds it down to an integer.
By multiplying it by a number, you effectively make the range 0..number-1. If you wish to generate it in range from num1 to num2, do:
Math.floor(Math.random() * (num2-num1 + 1) + num1)
To generate more numbers, just use a for loop and put results into an array or write them into the document directly.
function generateRange(pCount, pMin, pMax) {
min = pMin < pMax ? pMin : pMax;
max = pMax > pMin ? pMax : pMin;
var resultArr = [], randNumber;
while ( pCount > 0) {
randNumber = Math.round(min + Math.random() * (max - min));
if (resultArr.indexOf(randNumber) == -1) {
resultArr.push(randNumber);
pCount--;
}
}
return resultArr;
}
Depending on range needed the method of returning the integer can be changed to: ceil (a,b], round [a,b], floor [a,b), for (a,b) is matter of adding 1 to min with floor.
Math.floor(Math.random()*limit)+1
for(i = 0;i <amount; i++)
{
var randomnumber=Math.floor(Math.random()*limit)+1
document.write(randomnumber)
}
Here’s another algorithm for ensuring the numbers are unique:
generate an array of all the numbers from 0 to x
shuffle the array so the elements are in random order
pick the first n
Compared to the method of generating random numbers until you get a unique one, this method uses more memory, but it has a more stable running time – the results are guaranteed to be found in finite time. This method works better if the upper limit is relatively low or if the amount to take is relatively high.
My answer uses the Lodash library for simplicity, but you could also implement the algorithm described above without that library.
// assuming _ is the Lodash library
// generates `amount` numbers from 0 to `upperLimit` inclusive
function uniqueRandomInts(upperLimit, amount) {
var possibleNumbers = _.range(upperLimit + 1);
var shuffled = _.shuffle(possibleNumbers);
return shuffled.slice(0, amount);
}
Something like this
var limit = 10;
var amount = 3;
var nums = new Array();
for(int i = 0; i < amount; i++)
{
var add = true;
var n = Math.round(Math.random()*limit + 1;
for(int j = 0; j < limit.length; j++)
{
if(nums[j] == n)
{
add = false;
}
}
if(add)
{
nums.push(n)
}
else
{
i--;
}
}
var randomNums = function(amount, limit) {
var result = [],
memo = {};
while(result.length < amount) {
var num = Math.floor((Math.random() * limit) + 1);
if(!memo[num]) { memo[num] = num; result.push(num); };
}
return result; }
This seems to work, and its constant lookup for duplicates.
These answers either don't give unique values, or are so long (one even adding an external library to do such a simple task).
1. generate a random number.
2. if we have this random already then goto 1, else keep it.
3. if we don't have desired quantity of randoms, then goto 1.
function uniqueRandoms(qty, min, max){
var rnd, arr=[];
do { do { rnd=Math.floor(Math.random()*max)+min }
while(arr.includes(rnd))
arr.push(rnd);
} while(arr.length<qty)
return arr;
}
//generate 5 unique numbers between 1 and 10
console.log( uniqueRandoms(5, 1, 10) );
...and a compressed version of the same function:
function uniqueRandoms(qty,min,max){var a=[];do{do{r=Math.floor(Math.random()*max)+min}while(a.includes(r));a.push(r)}while(a.length<qty);return a}
/**
* Generates an array with numbers between
* min and max randomly positioned.
*/
function genArr(min, max, numOfSwaps){
var size = (max-min) + 1;
numOfSwaps = numOfSwaps || size;
var arr = Array.apply(null, Array(size));
for(var i = 0, j = min; i < size & j <= max; i++, j++) {
arr[i] = j;
}
for(var i = 0; i < numOfSwaps; i++) {
var idx1 = Math.round(Math.random() * (size - 1));
var idx2 = Math.round(Math.random() * (size - 1));
var temp = arr[idx1];
arr[idx1] = arr[idx2];
arr[idx2] = temp;
}
return arr;
}
/* generating the array and using it to get 3 uniques numbers */
var arr = genArr(1, 10);
for(var i = 0; i < 3; i++) {
console.log(arr.pop());
}
I think, this is the most human approach (with using break from while loop), I explained it's mechanism in comments.
function generateRandomUniqueNumbersArray (limit) {
//we need to store these numbers somewhere
const array = new Array();
//how many times we added a valid number (for if statement later)
let counter = 0;
//we will be generating random numbers until we are satisfied
while (true) {
//create that number
const newRandomNumber = Math.floor(Math.random() * limit);
//if we do not have this number in our array, we will add it
if (!array.includes(newRandomNumber)) {
array.push(newRandomNumber);
counter++;
}
//if we have enought of numbers, we do not need to generate them anymore
if (counter >= limit) {
break;
}
}
//now hand over this stuff
return array;
}
You can of course add different limit (your amount) to the last 'if' statement, if you need less numbers, but be sure, that it is less or equal to the limit of numbers itself - otherwise it will be infinite loop.
Just as another possible solution based on ES6 Set ("arr. that can contain unique values only").
Examples of usage:
// Get 4 unique rnd. numbers: from 0 until 4 (inclusive):
getUniqueNumbersInRange(4, 0, 5) //-> [5, 0, 4, 1];
// Get 2 unique rnd. numbers: from -1 until 2 (inclusive):
getUniqueNumbersInRange(2, -1, 2) //-> [1, -1];
// Get 0 unique rnd. numbers (empty result): from -1 until 2 (inclusive):
getUniqueNumbersInRange(0, -1, 2) //-> [];
// Get 7 unique rnd. numbers: from 1 until 7 (inclusive):
getUniqueNumbersInRange(7, 1, 7) //-> [ 3, 1, 6, 2, 7, 5, 4];
The implementation:
function getUniqueNumbersInRange(uniqueNumbersCount, fromInclusive, untilInclusive) {
// 0/3. Check inputs.
if (0 > uniqueNumbersCount) throw new Error('The number of unique numbers cannot be negative.');
if (fromInclusive > untilInclusive) throw new Error('"From" bound "' + fromInclusive
+ '" cannot be greater than "until" bound "' + untilInclusive + '".');
const rangeLength = untilInclusive - fromInclusive + 1;
if (uniqueNumbersCount > rangeLength) throw new Error('The length of the range is ' + rangeLength + '=['
+ fromInclusive + '…' + untilInclusive + '] that is smaller than '
+ uniqueNumbersCount + ' (specified count of result numbers).');
if (uniqueNumbersCount === 0) return [];
// 1/3. Create a new "Set" – object that stores unique values of any type, whether primitive values or object references.
// MDN - https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
// Support: Google Chrome 38+(2014.10), Firefox 13+, IE 11+
const uniqueDigits = new Set();
// 2/3. Fill with random numbers.
while (uniqueNumbersCount > uniqueDigits.size) {
// Generate and add an random integer in specified range.
const nextRngNmb = Math.floor(Math.random() * rangeLength) + fromInclusive;
uniqueDigits.add(nextRngNmb);
}
// 3/3. Convert "Set" with unique numbers into an array with "Array.from()".
// MDN – https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
// Support: Google Chrome 45+ (2015.09+), Firefox 32+, not IE
const resArray = Array.from(uniqueDigits);
return resArray;
}
The benefits of the current implementation:
Have a basic check of input arguments – you will not get an unexpected output when the range is too small, etc.
Support the negative range (not only from 0), e. g. randoms from -1000 to 500, etc.
Expected behavior: the current most popular answer will extend the range (upper bound) on its own if input bounds are too small. An example: get 10000 unique numbers with a specified range from 0 until 10 need to throw an error due to too small range (10-0+1=11 possible unique numbers only). But the current top answer will hiddenly extend the range until 10000.
I wrote this C# code a few years back, derived from a Wikipedia-documented algorithm, which I forget now (feel free to comment...). Uniqueness is guaranteed for the lifetime of the HashSet. Obviously, if you will be using a database, you could store the generated numbers there. Randomness was ok for my needs, but probably can be improved using a different RNG. Note: count must be <= max - min (duh!) and you can easily modify to generate ulongs.
private static readonly Random RndGen = new Random();
public static IEnumerable<int> UniqueRandomIntegers(int count, int min, int max)
{
var rv = new HashSet<int>();
for (var i = max - min - count + 1; i <= max - min; i++)
{
var r = (int)(RndGen.NextDouble() * i);
var v = rv.Contains(r) ? i : r;
rv.Add(v);
yield return v;
}
}
Randomized Array, Sliced
Similar to #rory-okane's answer, but without lodash.
Both Time Complexity and Space Complexity = O(n) where n=limit
Has a consistent runtime
Supports a positive or negative range of numbers
Theoretically, this should support a range from 0 to ±2^32 - 1
This limit is due to Javascript arrays only supporting 2^32 - 1 indexes as per the ECMAScript specification
I stopped testing it at 10^8 because my browser got weird around here and strangely only negative numbers to -10^7 - I got an Uncaught RangeError: Invalid array length error (shrug)
Bonus feature: Generate a randomized array of n length 0 to limit if you pass only one argument
let uniqueRandomNumbers = (limit, amount = limit) => {
let array = Array(Math.abs(limit));
for (let i = 0; i < array.length; i++) array[i] = i * Math.sign(limit);
let currentIndex = array.length;
let randomIndex;
while(currentIndex > 0) {
randomIndex = Math.floor(Math.random() * currentIndex--);
[array[currentIndex], array[randomIndex]] = [array[randomIndex], array[currentIndex]];
}
return array.slice(0, Math.abs(amount));
}
console.log(uniqueRandomNumbers(10, 3));
console.log(uniqueRandomNumbers(-10, 3));
//bonus feature:
console.log(uniqueRandomNumbers(10));
Credit:
I personally got here because I was trying to generate random arrays of n length. Other SO questions that helped me arrive at this answer for my own use case are below. Thank you everyone for your contributions, you made my life better today.
Most efficient way to create a zero filled JavaScript array?
How to randomize (shuffle) a JavaScript array?
Also the answer from #ashleedawg is where I started, but when I discovered the infinite loop issues I ended up at the sliced randomized array approach.
const getRandomNo = (min, max) => {
min = Math.ceil(min);
max = Math.floor(max);
return Math.floor(Math.random() * (max - min + 1)) + min;
}
This function returns a random integer between the specified values. The value is no lower than min (or the next integer greater than min if min isn't an integer) and is less than (but not equal to) max.
Example
console.log(`Random no between 0 and 10 ${getRandomNo(0,10)}`)
Here's a simple, one-line solution:
var limit = 10;
var amount = 3;
randoSequence(1, limit).slice(0, amount);
It uses randojs.com to generate a randomly shuffled array of integers from 1 through 10 and then cuts off everything after the third integer. If you want to use this answer, toss this within the head tag of your HTML document:
<script src="https://randojs.com/1.0.0.js"></script>

Categories

Resources