Creating JS library with dynamic function calling - javascript

I'm creating a JS 'library' file, But I want to encapsulate it in it's entirety within an object, to avoid contaminating namespace of the pages that include the file
The twist to this is within a function inside the library I need to call others functions within library by name, eg using window[]
The code below is just a sample there would actually be several hundred functions that could be called by name. It's this that's caused by trouble as I can't get window[] to reference the function, what's the right way to go about this?
I have tried this, in host page:
<script src= "mylib.js"></script>
var oMyLib = new cMyLib(); //there will only ever be one 'instance' of this
In mylib.js everything is contained in one function:
function cMyLib() {
this.doStuff = function () {
someFunc(this); //call another function in the lib
}
// I tried it with prototypes also
// cMyLib.prototype.doStuff = function () {
// someFunc();
// }
function someFunc(that) {
var s='anotherFunc1'
var f = window[s]; //undefined!
f();
s='anotherFunc2'
f=window[s];
f();
}
function anotherFunc1() {}
function anotherFunc2() {}
}

The functions that you want to reference by name (or actually by number, according to your comments) should be part of that object, and not accessed via window, e.g.:
function cMyLib() {
// allow call without new
if (! (this instanceof cMyLib)) {
return new cMyLib();
}
// enforce singleton
if (this.constructor.singleton) {
return this.constructor.singleton;
} else {
Object.defineProperty(this.constructor, 'singleton', {
value: this
});
}
// instruction array (no need to expose via `this`)
var insn = [];
insn[0x4c] = function lda_immediate() { ... }
// instruction execution
this.step = function() {
var opcode = memory[pc++];
if (opcode in insn) {
// `.call` ensures `this` is set inside the instruction fn.
insn[opcode].call(this);
} else {
hcf();
}
}
}
Note the extra stuff at the top - convenience code to ensure that only one cMyLib can exist.

As long as a function is in parent scope you can just reference it directly, i.e.
function someFunc(that) {
anotherFunc1();
};
will simply work.
Another thing is that classical way to do this is to wrap everything in a self-calling anonymous function, i.e.
(function() {
function anotherFunc1() {};
function anotherFunc2() {};
this.cMyLib = function() { ... };
})();
But your approach is fine as well.
If you wish to call your functions by dynamic name, then you can store them in a top level object:
(function() {
var my_functions = {
anotherFunc1: function() {},
anotherFunc2: function() {}
};
this.cMyLib = function() {
var name = 'anotherFunc1';
my_functions[name]();
};
})();
It's like creating an isolated "global" scope.
Side note: Do not use eval. It is very unsafe and slow. It will backfire at you at some point.

Related

Making JavaScript private methods accessible to its public methods

I understand there are couple of patterns to make JavaScript 'class-like'.
I would like to take the 'extending by prototype' way... simply because it looks more neat. I am not worried about performance much here...
In the below example I have a class (basically function) MetricsChart. I have couple of public methods and one private method (basically a reusable method).
Here from the public method (drawOrAdd) I can't access the private method (_convertArrayToTable), how can I do that?
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
}
MetricsChart.prototype.drawOrAdd = function(data)
{
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
MetricsChart.prototype.isChartDrawn = function () {
return this._isChartDrawn;
}
MetricsChart.prototype.getChartData = function () {
}
One way I accidentally found was to enclose the public methods inside the MetricsChart class itself...
It works for me :): I can access the public methods outside and the public method can access the private method (serves the purpose).
Below code... Is this right? Am I doing anything wrong?
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
MetricsChart.prototype.drawOrAdd = function (data) {
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
MetricsChart.prototype.isChartDrawn = function () {
return this._isChartDrawn;
}
MetricsChart.prototype.getChartData = function () {
}
}
So, here a couple of things, in order to understand what you have done precisely.
First of all:
function foo() {
var i = 0;
function bar() {
return true;
}
}
What's happening here: every time the function foo is called, it creates in its scope a new variable i, and a new function bar. The function bar and the variable i are in its scope, it means they're local: there is no way, with this code, to access to either i or bar outside the function foo. Also because, once the function foo is terminated, both i and bar are disposed.
So, this is why you cannot access from your "public" method to the "private" one, and I hope it's more clear now. The only way for a function to access to a function or variable is that there is a reference shared in the same scope. So, this is what you have done in your last example: you define your "public" methods in the same scope where you define your "private" method. In this way they can access each other. However, the way you have done, has a big downside. As I said previously, the function bar is created every time the function foo is called. In a "class" example, it means:
function MyClass() {
function myprivate() {}
MyClass.prototype.mypublic = function () { return myprivate() }
}
It means that every time you're creating an instance of MyClass, you're creating two new functions, and you're rewrite all the time the prototype of your "class". This is far from be a good approach. In fact, if you have something like:
var a = new MyClass();
var _mypublic = a.mypublic;
var b = new MyClass();
console.log(_mypublic === b.mypublic) // false
console.log(_mypublic === a.mypublic) // false too!
So, you guess right but you executed wrong. What you need here is a the "module pattern": nowadays you can use CommonJS module in nodejs or AMD in browser and so on, but the basic idea is defined a "scope" and exports from this scope only what you want. In your case, you could have:
// this is your "module"
;(function(exports) {
// your local (private) function
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
function MetricsChart(containerId, chartType) {
this._container = document.getElementById(containerId);
this._chartType = chartType;
this._isChartDrawn = false;
this._chartData = null;
}
MetricsChart.prototype.drawOrAdd = function(data) {
if (!this.isChartDrawn()) {
var chart = new google.visualization.LineChart(this._container);
if (chart) {
var table = _convertArrayToTable(data);
console.log(table);
this._isChartDrawn = true;
}
}
}
// you decided to exports to the main scope what you want
exports.MetricsChart = MetricsChart;
}(this)); // here `this` is the global object
And that's it. You have created a closure, using the "module pattern", and from the "public" method you can access to the "private" function, because they're defined in the same scope. But because you do not do that in the "class" constructor, you don't redefine them every time you instantiate a new object. Therefore, the previous example written in this way, will give the right result:
var a = new MyClass();
var _mypublic = a.mypublic;
var b = new MyClass();
console.log(_mypublic === b.mypublic) // true
console.log(_mypublic === a.mypublic) // true
What you've done isn't necessarily "wrong"...it just looks weird. Also, you won't be able to access "MetricsChart.prototype.*" until after you've created an instance of "MetricsChart". Depending on how you are using this object, it may not matter.
That being said, another way is to keep your original structure, but move the following outside of the constructor:
var _convertArrayToTable = function (data) {
return google.visualization.arrayToDataTable(data);
}
It would still be private to your module which should be good enough (you are using modules right?).
What you have done works perfectly.
You can't inherit private methods in any OOP language in terms of overriding them or accessing them directly. They are private. So it makes no sense to have them prototyped for inheritance purposes. You have wrapped them in function scope so they are as "private" as they need to be.
To access the private methods use privilege methods. Check this document: http://javascript.crockford.com/private.html.
About your code check this answer:
Setting javascript prototype function within object class declaration
p.s.
function Test()
{
var p = function(pv)
{
//
}
this.e = function (ap) { p(ap) }
}
var n = new Test();
n.e("e"); // It is legal call
n.p(); // will throw
But if you declare a private function in c-tor it will be executed on first creation of object of this type. When declare a methods in prototype this methods are add before any code execution. In general the browser first check the js file to collect all methods for prototype and than execute any code. So when you declare a prototype methods into c-tor this methods will be available only after first creation of the object of those type. ( Sorry for my English ).
Check this situation:
function Test()
{
alert(this.ST_A);//alert undefined
alert(this.ST_B);//alert 2
Test.prototype.ST_A = 1;
alert( this.ST_A)//alert 1
}
Test.prototype.ST_B = 2;
In first pass the browser will populate Test with ST_B and ST_B will be available anywhere any time. After than in second pass the browser will start to execute the code in this time ST_A will not be visible until the browser execute the Test.prototype.ST_A = 1;

Javascript mixins when using the module pattern

I've been using the module pattern for a while, but recently have started wanting to mix in functions and properties into them to increase code re-use. I've read some good resources on the subject, but still am a bit uncertain as to the best approach. Here is a module:
var myModule = function () {
var privateConfigVar = "Private!";
//"constructor"
function module() {}
module.publicMethod = function () {
console.log('public');
}
function privateMethod1() {
console.log('private');
}
return module;
}
And here is a mixin object:
var myMixin = function () {};
Mixin.prototype = {
mixinMethod1: function () {
console.log('mixin private 1');
},
mixinMethod2: function () {
console.log('mixin private 2');
}
};
Ideally, I'd like to mix-in some methods from other objects as private methods and some as public methods, so that I could call some "extend" function, with a param as "private"/"public". So, that
mixin(myModule, myMixin, "private");
makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope, and:
mixin(myModule, myMixin, "public");
makes the myMixin methods available within myModule by calling module.mixinMethod1() and have correct scope
I've tried using a method that copies properties from one prototype to another, I've tried the underscore extend method to copy properties of the object from one to to the other, and various things in between. I think I'm a bit turned around regarding scope and prototypes at this point, and would love some direction as to how best to do mixins like this when using the module pattern. Note that it doesn't matter what the object myMixin looks like (whether adding functions to the prototype, or a module itself), I'm just trying to figure out some way to make it work.
Thank!
So that [some code] makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope
That's impossible. You cannot modify a scope by calling a function, especially not from outside. See also Is it possible to import variables in JavaScript? for the design reasons of that.
So, what can you do?
From outside the module
Nothing to the private scope(s) of module functions. And you cannot use the private functions of the module, obviously. You can extend its prototype with methods (which is the most common), you can even decorate its constructor function. Within those, you can use your own private functions, either completely static ones or class-specific ones.
var myMixin = (function() {
// everything class-unspecific but mixin-local
var staticMixinVariables, …;
function globalPrivateFunction(){…}
function staticMethod(){…}
return function(mod) {
// everything class-specific
// also using the locals from above
mod.staticHelper = function() { staticMixinVariable … };
mod.prototype.mixinMethod1 = staticMethod;
mod.prototype.mixinMethod2 = function(){…};
…
};
})();
// Example:
myMixin(SomeClass)
From within the module
Using the mixin in the module code itself can allow for much greater flexibility.
var myMixin = (function() {
// everything class-unspecific but mixin-local
…
return {
publicHelper1: function(){…},
publicHelper2: function(){…},
decorateInstance: function(o) {
o.xy = …;
},
extendPrototype: function(proto) {
// everything class-specific
// also using the locals from above
proto.mixinMethod1 = staticMethod;
proto.mixinMethod2 = function(){…};
…
}
};
})();
With such an interface, it becomes easy to construct a class that is using this as a mixin (not inheriting from it):
var myClass = (function() {
function Constructor() {
myMixin.decorateInstance(this);
…
}
Constructor.prototype.method1 = function() { myMixin.publicHelper1() … };
Constructor.prototype.method2 = function() { … };
myMixin.extendPrototype(Constructor.prototype);
Constructor.myHelper = myMixin.publicHelper2; // re-export explicitly
return Constructor;
})();
However, the mixin will never have access to the private class variables, nor can it present a private, class-specific API. Still, we can use dependency injection to provide that access explicitly (and having a mixin factory in effect):
var myClass = (function() {
var … // private class functions and variables
var mixer = myMixin(privateClassHelper,
privateClassVariable,
function setPrivateVar(x) {…},
… );
var myHelper = mixer.customHelper, … // local "aliases"
function Constructor(localX) {
mixer.decorateInstance(this, localX);
…
}
… // further using the class-specific private mixer
return Constructor;
})();
Not all techniques shown above need to be used in every mixin, just choose the ones you need. Not all possible techniques are shown in the above examples, also :-) The mixin pattern can be applied onto a plain module or inside its declaration as well, the above examples have only shown classes with prototypes.
For a few good examples, and a theoretical distinction between (stateless) Traits, (stateful) Mixins and their "privileged" counterparts, have a look at this presentation.
The with keyword can be very usefull to define a scope, but it has also some drawbacks (it is by the way forbidden in strict mode).
Using the with keyword, you can define a private variable privateScope within the body of your module, that would contain all your provate methods :
var myModule = function () {
var privateConfigVar = "Private!";
var privateScope = {};
//"constructor"
function module() {}
var proto = module.prototype;//avoids multiple attribute lookup
//Let's re-define you example' private method, but with a new strategy
privateScope['privateMethod1'] = function() {
console.log('private');
}
proto.publicMethod = function () {
with(privateScope){
//this call should work
privateMethod1();
}
console.log('public');
}
proto.publicMethod2=function(name,fn){
with(privateScope){
//this will be defined later by a Mixin
otherPrivateMethod();
}
console.log('public2');
}
proto.definePrivateFunction=function(name,fn){
privateScope[name] = fn;
}
return module;
}
Your mixin will use the definePrivateFunction we just defined to add private methods to the private scope :
//An example mixin implementation
function Mixin(source,target,flag){
if(flag==="private"){
for(var currentMethodName in source){
target.definePrivateFunction(currentMethodName,source[currentMethod])
}
}else{
for(var currentMethodName in source){
target[currentMethodName]=source[currentMethod];
}
}
}
The following code should work fine:
var test = myModule();
var testInstance = new test();
testInstance.publicMethod();// will call the private method defined internally
Mixin({
otherPrivateMethod:function(){
console.log("other Prvate Method called")
}
},test.prototype,"private");
testInstance.publicMethod2();// will call the private method defined by the mixin
Ideally, I'd like to mix-in some methods from other objects as private methods and some as public methods, so that I could call some "extend" function, with a param as "private"/"public". ...
As it already has been mentioned, there is no way of achieving exactly this goal.
So, that ... makes the myMixin methods available within myModule by just calling mixinMethod1() and have correct scope, and: ... makes the myMixin methods available within myModule by calling module.mixinMethod1() and have correct scope.
And referring to scope ... this is a closed address space created by functions.
Except for closures, scope only is available during a function's runtime
within this function's body. It never ever can be manipulated/spoofed.
The term one is looking for is context. JavaScript, being in many ways highly
dynamic, is build upon late binding (the object/target/context a method is called
on gets evaluated/looked up at runtime) and two kinds of delegation.
Context gets delegated either automatically by "walking the prototype chain"
or explicitly by one of both call methods which every function object does provide
- either call or apply.
Thus JavaScript already at language core level does offer a function based
Mixin pattern that is mightier than any of the available extend(s) or mixin
implementations for it provides delegation for free and is able of passing
around state which almost every of the blamed helpers does lack unless there
was effort of implementing this feature again in a rather roundabout fashion
(or ass-backwards to put it bluntly).
Bergi for his explanation already earned the bounties.
Within his answer's last paragraph there is a link to resources of mine that
already got outdated 3 month after giving the referred talk. Due of not having
enough reputation points, I'm not able to comment his answer directly. For this
I'll take the chance pointing now to the latest state of my personal research and
understanding of »The many talents of JavaScript for generalizing Role Oriented Programming approaches like Traits and Mixins«
Back again answering the OP's question.
I'm going to change the two first given code examples from the assumed module pattern
and the rather exemplarily provided mixin code base towards a plain constructor function
and what I'm meanwhile tempted to call a "proxified" and/or "bicontextual" mixin in order
to boil down the mechanics of delegating two different target/context objects at once.
Thus demonstrating a pure function based mixin pattern that might come closest to what
the OP tries to achieve.
var MyBicontextualMixin = function (localProxy) {
localProxy.proxifiedAccessible = function () {
console.log("proxified accessible.");
};
this.publiclyAccessible = function () {
console.log("publicly accessible.");
};
};
var MyConstructor = function () {
var localProxy = {};
MyBicontextualMixin.call(this, localProxy);
var locallyAccessible = localProxy.proxifiedAccessible;
// call 'em
locallyAccessible(); // "proxified accessible."
this.publiclyAccessible(); // "publicly accessible."
};
(new MyConstructor);
// will log:
//
// proxified accessible.
// publicly accessible.
This special pattern also is the underlying base for composing pure
function based Traits that rely on conflict resolution functionality
provided by "proxified" Mixins that won't expose this functionality
into public.
And for not ending up that theoretical there will be a "real world example",
composing a Queue module out of various reusable mixins that entirely
worship the approach of DRY. It also should answer the OP's question about
how to achieve encapsulation and exposition build only upon the module
pattern and function based mixin composition.
var Enumerable_first_last_item = (function (global) {
var
parseFloat = global.parseFloat,
math_floor = global.Math.floor,
// shared code.
first = function () {
return this[0];
},
last = function () {
return this[this.length - 1];
},
item = function (idx) {
return this[math_floor(parseFloat(idx, 10))];
}
;
return function () { // [Enumerable_first_last_item] Mixin.
var enumerable = this;
enumerable.first = first;
enumerable.last = last;
enumerable.item = item;
};
}(window || this));
var Enumerable_first_last_item_proxified = function (list) {
Enumerable_first_last_item.call(list);
// implementing the proxified / bicontextual [Enumerable_first_last_item] Mixin.
var enumerable = this;
enumerable.first = function () {
return list.first();
};
enumerable.last = function () {
return list.last();
};
enumerable.item = function (idx) {
return list.item(idx);
};
};
var Allocable = (function (Array) {
var
array_from = ((typeof Array.from == "function") && Array.from) || (function (array_prototype_slice) {
return function (listType) {
return array_prototype_slice.call(listType);
};
}(Array.prototype.slice))
;
return function (list) { // proxified / bicontextual [Allocable] Mixin.
var
allocable = this
;
allocable.valueOf = allocable.toArray = function () {
return array_from(list);
};
allocable.toString = function () {
return ("" + list);
};
allocable.size = function () {
return list.length;
};
Enumerable_first_last_item_proxified.call(allocable, list);
};
}(Array));
var Queue = (function () { // [Queue] Module.
var
onEnqueue = function (queue, type) {
//queue.dispatchEvent({type: "enqueue", item: type});
},
onDequeue = function (queue, type) {
//queue.dispatchEvent({type: "dequeue", item: type});
}/*,
onEmpty = function (queue) {
//queue.dispatchEvent({type: "empty"});
}*/,
onEmpty = function (queue) {
//queue.dispatchEvent("empty");
},
Queue = function () { // [Queue] Constructor.
var
queue = this,
list = []
;
queue.enqueue = function (type) {
list.push(type);
onEnqueue(queue, type);
return type;
};
queue.dequeue = function () {
var type = list.shift();
onDequeue(queue, type);
(list.length || onEmpty(queue));
return type;
};
//Observable.call(queue); // applying the [Observable] Mixin.
Allocable.call(queue, list); // applying the bicontextual [Allocable] Mixin.
},
isQueue = function (type) {
return !!(type && (type instanceof Queue));
},
createQueue = function () { // [Queue] Factory.
return (new Queue);
}
;
return { // [Queue] Module.
isQueue : isQueue,
create : createQueue
};
}());
var q = Queue.create();
//q.addEventListener("enqueue", function (evt) {/* ... */});
//q.addEventListener("dequeue", function (evt) {/* ... */});
//q.addEventListener("empty", function (evt) {/* ... */});
console.log("q : ", q); // { .., .., .., }
console.log("q.size() : ", q.size()); // 0
console.log("q.valueOf() : ", q.valueOf()); // []
"the quick brown fox jumped over the lazy dog".split(/\s+/).forEach(function (elm/*, idx, arr*/) {
console.log("q.enqueue(\"" + elm + "\")", q.enqueue(elm));
});
console.log("q.size() : ", q.size()); // 9
console.log("q.toArray() : ", q.toArray()); // [ .., .., .., ]
console.log("q.first() : ", q.first()); // "the"
console.log("q.last() : ", q.last()); // "dog"
console.log("q.item(2) : ", q.item(2)); // "brown"
console.log("q.item(5) : ", q.item(5)); // "over"
console.log("q.dequeue()", q.dequeue()); // "the"
console.log("q.dequeue()", q.dequeue()); // "quick"
console.log("q.dequeue()", q.dequeue()); // "brown"
console.log("q.dequeue()", q.dequeue()); // "fox"
console.log("q.dequeue()", q.dequeue()); // "jumped"
console.log("q.size() : ", q.size()); // 4
console.log("q.toArray() : ", q.toArray()); // [ .., .., .., ]
console.log("q.first() : ", q.first()); // "over"
console.log("q.last() : ", q.last()); // "dog"
console.log("q.item(2) : ", q.item(2)); // "lazy"
console.log("q.item(5) : ", q.item(5)); // undefined
.as-console-wrapper { max-height: 100%!important; top: 0; }

JavaScript convention: How do you assign arguments to the parent scope

var problemtest = function () {
var parameters;
return function (parameters) {
parameters = parameters;
}
}
var mysolutiontest = function () {
var parameters;
return function (parametersIn) {
parameters = parametersIn;
}
}
This is more of a JavaScript convention question.
Usually I have code similar to that on top. A function take arguments and assigns it to parent scope. However, I cannot use it as in problemtest, as the parameters that are arguments hide the parameters from problemtest.
In OO Programming we can use this, but in JavaScript I cannot use this, so I usually implement a solution similar to mysolutiontest. However, I am not fully satisfied with this solution. Is there a better way of doing this?
If your functions need to share some properties, then assigning them to an object is an elegant and common pattern:
var object = {
property: ['item'],
methodOne: function() {
console.log(this.property);
},
methodTwo: function() {
console.log(this.property);
}
};
object.methodOne(); // ['item']
object.methodTwo(); // ['item']
For further information on how 'this' works within an object - http://javascriptweblog.wordpress.com/2010/08/30/understanding-javascripts-this/
I usually use _parameters as a convention. This stems from my Java past. This isn't isolated to your example or to Javascript. Any language that does not force you to qualify the variables of any enclosing scope would lead you to the same problem.
var mysolutiontest = function () {
var _parameters;
return function (parameters) {
_parameters = parameters;
}
}
I've also seen people use p_parameters to quality function argument names. This is not one of my favorites tho.
var mysolutiontest = function () {
var parameters;
return function (p_parameters) {
parameters = p_parameters;
}
}
My 2c.

javascript organisation

I came across this Q/A on javascript code organisation.
var DED = (function() {
var private_var;
function private_method()
{
// do stuff here
}
return {
method_1 : function()
{
// do stuff here
},
method_2 : function()
{
// do stuff here
}
};
})();
Currently I do this,
var DED = new Object;
DED = {
sidebar : {
method_1 : function (data){
//some stuff
},
method_2 : function(data){
//do more
}
},
main : {
//.......
},
globalVariables : {
//...
}
}
What is the advantage of one over the other?
Warning: newbie here.
As indicated, that method uses closures to implement private functions and data. It's an alternative to the constructor method (below). E.g.
var DED = new (function()
{
var private_var;
function private_method()
{
// do stuff here
}
this.method_1 = function()
{
// do stuff here
};
this.method_2 = function()
{
// do stuff here
};
})();
With the DED method shown in your question, there is no constructor. Rather the function returns an object created from an object literal. The functions in that object have the private variable and method closed into them.
What you return from the anonymous self-calling function (function(){})() is the interface you publish for your "module" (DED).
DED.method_1() is public. private_method/private_var are not accessible from outside but everything inside of your self-calling function has access to them.
If you like this kind of access-control this is a good way to prevent other developer from accidentally messing with the internals of your module. In a lot of cases i'd just go for a naming convention like a leading underscore to indicate internals.
Javascript is very dynamic and if someone really wants to mess with code they have no write-access to they will be able to do so. Edit: This turns out to be a wrong assuption and not the case for private data in constructors or closures. Please, see: http://www.crockford.com/javascript/private.html

JavaScript class memory usage

So I've been doing some JavaScript class-like stuff such as
MyClass = function()
{
var x;
this.sayX = function()
{
alert(x);
}
}
but I've also seen
MyClass = function()
{
this.x = 0;
}
MyClass.prototype.sayX = function()
{
alert(this.x);
}
The big question is, am I still wasting memory space in today's JavaScript engines, or are they capable of seeing the duplication in my method and optimizing them out? The reason I ask is because I'd rather do proper data hiding and not have to prefix absolutely everything with 'this'.
The memory footprint of the first one will always be larger. Consider prototype as a shared package of methods that all instances can use. It is effective because you don't create a new function for every instance, but you're reusing the existing method already in memory.
The good news is that the two ways you showed can be combined.
MyClass = function () {
var x;
// public method with access
// to private variables
this.sayX = function () {
alert(x);
};
}
// method that doesn't need access to private variables
MyClass.prototype.sharedMethod = function () {
// ...
}
But as far as you're dealing with small codebase, you shouldn't worry about memory usage. You can even use patterns like
// everything will be created for every
// instance, but the whole thing is nicely
// wrapped into one 'factory' function
myClass = function () {
// private variables
var x;
// private methods
function doSomethingWithX() {}
// public interface
return {
sayX: function () {
alert(x);
},
publicMethod: function () { .. },
// ...
};
};
Note, I intentionally changed myClass to lowercase, because it's no longer a constructor function and there's no need to use new when invoking!
UPDATE - there's a third pattern which well suits your needs:
MyClass = function (x, y, whatever) {
this._init.apply(this, arguments);
}
// The prototype creates a scope for data hiding.
// It also includes a constructor function.
MyClass.prototype = (function () {
var x; // private
return {
_init: function (x_in) {
x = x_in;
},
sayX: function () {
alert(x);
},
// ...
};
})();
Revisiting this a huge amount later, but it turns out V8 is smart enough that it doesn't create multiple instanced of that function in the first method. Go hidden classes :D
http://www.youtube.com/watch?v=hWhMKalEicY

Categories

Resources