JavaScript - Preventing octal conversion - javascript

I'm taking a numerical input as an argument and was just trying to account for leading zeroes. But it seems javascript converts the number into octal before I can do anything to the number. The only way to work around it so far is if I pass the number as a string initially but I was hoping there'd be another way to convert it after it is passed? So far tried (using 017 which alerted me to the octal behaviour):
017.toString(10) // 15
parseInt(017,10) // 15
017 + "" //15
new Number(017) //15
new Number('017') //17
parseInt('017', 10) // 17
So given
function(numb) {
if (typeof numb === number) {
// remove leading zeroes and convert to decimal
}
else {
// use parseInt
}
}
'use strict' also doesn't seem to solve this as some older posts have suggested. Any ideas?

If you take "numerical input", you should always definitely guaranteed have a string. There's no input method in this context that I know that returns a Number. Since you receive a string, parseInt(.., 10) will always be sufficient. 017 is only interpreted as octal if written literally as such in source code (or when missing the radix parameter to parseInt).
If for whatever bizarre reason you do end up with a decimal interpreted as octal and you want to reverse-convert the value back to a decimal, it's pretty simple: express the value in octal and re-interpret that as decimal:
var oct = 017; // 15
parseInt(oct.toString(8), 10) // 17
Though because you probably won't know whether the input was or wasn't interpreted as octal originally, this isn't something you should have to do ever.

JavaScript interprets all numbers beginning with a 0, and containing all octal numerals as octals - eg 017 would be an octal but 019 wouldn't be. If you want your number as a decimal then either
1. Omit the leading 0.
2. Carry on using parseInt().
The reason being is that JavaScript uses a few implicit conversions and it picks the most likely case based on the number. It was decided in JavaScript that a leading 0 was the signal that a number is an octal. If you need that leading 0 then you have to accept that rule and use parseInt().
Source

If you type numbers by hand to script then not use leading zeros (which implicity treat number as octal if it is valid octal - if not then treat it as decimal). If you have number as string then just use + operator to cast to (decimal) number.
console.log(+"017")
if (021 < 019) console.log('Paradox');
The strict mode will not allow to use zero prefix
'use strict'
if (021 < 019) console.log('Paradox');

Related

Numeric conversion in JavaScript [duplicate]

How do parseInt() and Number() behave differently when converting strings to numbers?
Well, they are semantically different, the Number constructor called as a function performs type conversion and parseInt performs parsing, e.g.:
// parsing:
parseInt("20px"); // 20
parseInt("10100", 2); // 20
parseInt("2e1"); // 2
// type conversion
Number("20px"); // NaN
Number("2e1"); // 20, exponential notation
Also parseInt will ignore trailing characters that don't correspond with any digit of the currently used base.
The Number constructor doesn't detect implicit octals, but can detect the explicit octal notation:
Number("010"); // 10
Number("0o10") // 8, explicit octal
parseInt("010"); // 8, implicit octal
parseInt("010", 10); // 10, decimal radix used
And it can handle numbers in hexadecimal notation, just like parseInt:
Number("0xF"); // 15
parseInt("0xF"); //15
In addition, a widely used construct to perform Numeric type conversion, is the Unary + Operator (p. 72), it is equivalent to using the Number constructor as a function:
+"2e1"; // 20
+"0xF"; // 15
+"010"; // 10
typeof parseInt("123") => number
typeof Number("123") => number
typeof new Number("123") => object (Number primitive wrapper object)
first two will give you better performance as it returns a primitive instead of an object.
One minor difference is what they convert of undefined or null,
Number() Or Number(null) Or Number('') // returns 0
while
parseInt() Or parseInt(null) // returns NaN
Summary:
parseInt():
Takes a string as a first argument, the radix (An integer which is the base of a numeral system e.g. decimal 10 or binary 2) as a second argument
The function returns a integer number, if the first character cannot be converted to a number NaN will be returned.
If the parseInt() function encounters a non numerical value, it will cut off the rest of input string and only parse the part until the non numerical value.
If the radix is undefined or 0, JS will assume the following:
If the input string begins with "0x" or "0X", the radix is 16 (hexadecimal), the remainder of the string is parsed into a number.
If the input value begins with a 0 the radix can be either 8 (octal) or 10 (decimal). Which radix is chosen is depending on JS engine implementation. ES5 specifies that 10 should be used then. However, this is not supported by all browsers, therefore always specify radix if your numbers can begin with a 0.
If the input value begins with any number, the radix will be 10
Number():
The Number() constructor can convert any argument input into a number. If the Number() constructor cannot convert the input into a number, NaN will be returned.
The Number() constructor can also handle hexadecimal number, they have to start with 0x.
Example:
console.log(parseInt('0xF', 16)); // 15
// z is no number, it will only evaluate 0xF, therefore 15 is logged
console.log(parseInt('0xFz123', 16));
// because the radix is 10, A is considered a letter not a number (like in Hexadecimal)
// Therefore, A will be cut off the string and 10 is logged
console.log(parseInt('10A', 10)); // 10
// first character isnot a number, therefore parseInt will return NaN
console.log(parseInt('a1213', 10));
console.log('\n');
// start with 0X, therefore Number will interpret it as a hexadecimal value
console.log(Number('0x11'));
// Cannot be converted to a number, NaN will be returned, notice that
// the number constructor will not cut off a non number part like parseInt does
console.log(Number('123A'));
// scientific notation is allowed
console.log(Number('152e-1')); // 15.21
If you are looking for performance then probably best results you'll get with bitwise right shift "10">>0. Also multiply ("10" * 1) or not not (~~"10"). All of them are much faster of Number and parseInt.
They even have "feature" returning 0 for not number argument.
Here are Performance tests.
I found two links of performance compare among several ways of converting string to int.
parseInt(str,10)
parseFloat(str)
str << 0
+str
str*1
str-0
Number(str)
http://jsben.ch/#/zGJHM
http://phrogz.net/js/string_to_number.html
parseInt() -> Parses a number to specified redix.
Number()-> Converts the specified value to its numeric equivalent or NaN if it fails to do so.
Hence for converting some non-numeric value to number we should always use Number() function.
eg.
Number("")//0
parseInt("")//NaN
Number("123")//123
parseInt("123")//123
Number("123ac") //NaN,as it is a non numeric string
parsInt("123ac") //123,it parse decimal number outof string
Number(true)//1
parseInt(true) //NaN
There are various corner case to parseInt() functions as it does redix conversion, hence we should avoid using parseInt() function for coersion purposes.
Now, to check weather the provided value is Numeric or not,we should use nativeisNaN() function
I always use parseInt, but beware of leading zeroes that will force it into octal mode.
It's a good idea to stay away from parseInt and use Number and Math.round unless you need hex or octal. Both can use strings. Why stay away from it?
parseInt(0.001, 10)
0
parseInt(-0.0000000001, 10)
-1
parseInt(0.0000000001, 10)
1
parseInt(4000000000000000000000, 10)
4
It completely butchers really large or really small numbers. Oddly enough it works normally if these inputs are a string.
parseInt("-0.0000000001", 10)
0
parseInt("0.0000000001", 10)
0
parseInt("4000000000000000000000", 10)
4e+21
Instead of risking hard to find bugs with this and the other gotchas people mentioned, I would just avoid parseInt unless you need to parse something other than base 10. Number, Math.round, Math.floor, and .toFixed(0) can all do the same things parseInt can be used for without having these types of bugs.
If you really want or need to use parseInt for some of it's other qualities, never use it to convert floats to ints.
parseInt converts to a integer number, that is, it strips decimals. Number does not convert to integer.
Another way to get the result is to use the ~ operator
For most circumstances
~~someThing === parseInt(something)
but ~~ will return zero for strings that parseInt will accept with trailing other characters or with the number base spec (eg hex) and will also return zero when parseInt returns NaN. Another difference is that ~~ if given a bigint returns a bigint to which you can add another bigint whereas parseInt returns an ordinary floating point number (yes really - it gives exactly the same value as parseFloat) if the bigint is large
However for most circumstances ~~ is 30% faster than parseInt. It is only slower by 10% when something is a floating point represented as a string.
So if the more restricted scope of ~~ fits your need then save the computer time and give yourself less to type

Why is parseFloat('1/2') == 1 in Javascript

I am unable to understand this:
parseFloat('1/2') == 1 Not Expected
parseFloat(1/2) == 0.5 Expected
parseFloat('0.5') == 0.5 Expected
parseFloat(0.5) == 0.5 Expected
Is it some issue or am I doing something wrong? Also, how to get
parseFloat('1/2') == 0.5
As in doc mentioned parseFloat
parseFloat parses its argument, and returns a floating point number. If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal point, or an exponent, it returns the value up to that point and ignores that character and all succeeding characters. Leading and trailing spaces are allowed.
so 1/2 treated as a string.
Not only that - this string does not contain a valid number representation in JavaScript.
Numbers in JavaScript may include -, 0-9, . and +e.
/ is not a part of it. Therefore - parseFloat parses all the characters that are legal as a number - which in your case is just the 1 part, and ignores rest.
1/2 in JavaScript is not a number, but an expression including 2 numbers and an operator (1 = num, / = operator, 2 = number). What can execute expressions?
You can use eval to calculate fractional form.
console.log(eval('2/3'))
Mind that eval is a dangerous function: using eval on user-input can lead to exploits.
parseFloat does not understand the / character as a division nor does it do an eval of the string input.
It simply stops looking when it encounters the character it doesn't understand and returns the correctly parsed first part:
console.log(
parseFloat("1/2"), // 1
parseFloat("3/2"), // 3
parseFloat("1kahsdjfjhksd2") // 1
)
If you do want to evaluate the string "1/2" to the number 0.5, you can use eval. Be careful, because using eval can be a security risk, slow and hard to debug.
console.log(
eval("1/2")
);
Not 100% sure. but if you play around with parseFloat a bit you will see that it tries to convert every number it finds to a float, but stops as soon as there is a unexpected value so :
parseFloat('1/asdf') == 1
but
parseFloat('0.5') == 0.5
So parse float does not calculate for you, but just parses every number it finds, until there is something non numerical.
Your parsing a string that will be converted to 1. If your string was only numbers (e.g. "0.5") them they would be converted correctly, but as it includes the '/', the automatic type conversion will not occur and it will remain as a string. When using numbers the expected behavior occurs, that is:
parseFloat(1/2) === 0.5 // true

Why does string to number comparison work in Javascript

I am trying to compare a value coming from a HTML text field with integers. And it works as expected.
Condition is -
x >= 1 && x <= 999;
Where x is the value of text field. Condition returns true whenever value is between 1-999 (inclusive), else false.
Problem is, that the value coming from the text field is of string type and I'm comparing it with integer types. Is it okay to have this comparison like this or should I use parseInt() to convert x to integer ?
Because JavaScript defines >= and <= (and several other operators) in a way that allows them to coerce their operands to different types. It's just part of the definition of the operator.
In the case of <, >, <=, and >=, the gory details are laid out in ยง11.8.5 of the specification. The short version is: If both operands are strings (after having been coerced from objects, if necessary), it does a string comparison. Otherwise, it coerces the operands to numbers and does a numeric comparison.
Consequently, you get fun results, like that "90" > "100" (both are strings, it's a string comparison) but "90" < 100 (one of them is a number, it's a numeric comparison). :-)
Is it okay to have this comparison like this or should I use parseInt() to convert x to integer ?
That's a matter of opinion. Some people think it's totally fine to rely on the implicit coercion; others think it isn't. There are some objective arguments. For instance, suppose you relied on implicit conversion and it was fine because you had those numeric constants, but later you were comparing x to another value you got from an input field. Now you're comparing strings, but the code looks the same. But again, it's a matter of opinion and you should make your own choice.
If you do decide to explicitly convert to numbers first, parseInt may or may not be what you want, and it doesn't do the same thing as the implicit conversion. Here's a rundown of options:
parseInt(str[, radix]) - Converts as much of the beginning of the string as it can into a whole (integer) number, ignoring extra characters at the end. So parseInt("10x") is 10; the x is ignored. Supports an optional radix (number base) argument, so parseInt("15", 16) is 21 (15 in hex). If there's no radix, assumes decimal unless the string starts with 0x (or 0X), in which case it skips those and assumes hex. Does not look for the new 0b (binary) or 0o (new style octal) prefixes; both of those parse as 0. (Some browsers used to treat strings starting with 0 as octal; that behavior was never specified, and was [specifically disallowed][2] in the ES5 specification.) Returns NaN if no parseable digits are found.
Number.parseInt(str[, radix]) - Exactly the same function as parseInt above. (Literally, Number.parseInt === parseInt is true.)
parseFloat(str) - Like parseInt, but does floating-point numbers and only supports decimal. Again extra characters on the string are ignored, so parseFloat("10.5x") is 10.5 (the x is ignored). As only decimal is supported, parseFloat("0x15") is 0 (because parsing ends at the x). Returns NaN if no parseable digits are found.
Number.parseFloat(str) - Exactly the same function as parseFloat above.
Unary +, e.g. +str - (E.g., implicit conversion) Converts the entire string to a number using floating point and JavaScript's standard number notation (just digits and a decimal point = decimal; 0x prefix = hex; 0b = binary [ES2015+]; 0o prefix = octal [ES2015+]; some implementations extend it to treat a leading 0 as octal, but not in strict mode). +"10x" is NaN because the x is not ignored. +"10" is 10, +"10.5" is 10.5, +"0x15" is 21, +"0o10" is 8 [ES2015+], +"0b101" is 5 [ES2015+]. Has a gotcha: +"" is 0, not NaN as you might expect.
Number(str) - Exactly like implicit conversion (e.g., like the unary + above), but slower on some implementations. (Not that it's likely to matter.)
Bitwise OR with zero, e.g. str|0 - Implicit conversion, like +str, but then it also converts the number to a 32-bit integer (and converts NaN to 0 if the string cannot be converted to a valid number).
So if it's okay that extra bits on the string are ignored, parseInt or parseFloat are fine. parseInt is quite handy for specifying radix. Unary + is useful for ensuring the entire string is considered. Takes your choice. :-)
For what it's worth, I tend to use this function:
const parseNumber = (str) => str ? +str : NaN;
(Or a variant that trims whitespace.) Note how it handles the issue with +"" being 0.
And finally: If you're converting to number and want to know whether the result is NaN, you might be tempted to do if (convertedValue === NaN). But that won't work, because as Rick points out below, comparisons involving NaN are always false. Instead, it's if (isNaN(convertedValue)).
The MDN's docs on Comparision states that the operands are converted to a common type before comparing (with the operator you're using):
The more commonly used abstract comparison (e.g. ==) converts the operands to the same Type before making the comparison. For relational abstract comparisons (e.g., <=), the operands are first converted to primitives, then to the same type, before comparison.
You'd only need to apply parseInt() if you were using a strict comparision, that does not perform the auto casting before comparing.
You should use parseInt if the var is a string. Add = to compare datatype value:
parseInt(x) >== 1 && parseInt(x) <== 999;

Javascript alert number starting with 0

I have a button where in the code behind I add a onclick and I pass a unique ID which will be passed to the js function. The id starts with a 0.
It wasn't working and eventually I figured out that the number, id, it was passing was wrong...
Ie. see this: js fiddle
It works with a ' at the start and end of the number. Just wondering why 013 turns to 11. I did some googling and couldn't find anything...
Cheers
Robin
Edit:
Thanks guys. Yep understand now.
As in this case the 0 at the start has a meaning, here the recipient ID in a mailing list, I will use '013' instead of just 013, i.e. a string. I can then split the values in js as each of the 3 values represents a different id which will always be only 1 character long, i.e. 0-9.
A numeric literal that starts with a 0 is treated as an octal number. So 13 from base 8 is 11 in base 10...
Octal numeric literals have been deprecated, but still work if you are not in strict mode.
(You didn't ask, but) A numeric literal that starts with 0x is treated as hexadecimal.
More info at MDN.
In your demo the parameter is called id, which implies you don't need to do numerical operations on it - if so, just put it in quotes and use it as a string.
If you need to be able to pass a leading zero but still have the number treated as base 10 to do numerical operations on it you can enclose it in quotes to pass it as a string and then convert the string to a number in a way that forces base 10, e.g.:
something('013');
function something(id){
alert(+id); // use unary plus operator to convert
// OR
alert(parseInt(id,10)); // use parseInt() to convert
}
Demo: http://jsfiddle.net/XYa6U/5/
013 is octal, not decimal, it's equal 11 in decimal
You should note that 013 starts with a 0. In Javascript, this causes the number to be considered octal. In general you'll want to use the decimal, and hexadecimal number systems. Occasionally though, octal numbers are useful, as this question shows.
I hope this helps! :)
If the first digit of a number is a zero, parseInt interprets the number as an octal.
You can specify a base of ten like this:
parseInt(numberString, 10)
You could also remove such zeros with a regex like this (the result will be a string):
numberString.replace(/^0+/g, '');

What do you think parseInt("08") will return? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Workarounds for JavaScript parseInt octal bug
Surprisingly it returns 0. Why? and what's the (proper) solution to get correct results?
Use a radix:
var x = parseInt("08", 10);
Some JavaScript implementations add a third numeral system to the two defined by the standard (decimal, the default; and hex, prefixed with 0x): Octal, prefixed with 0. This is non-standard but acknowledged as common in the latest spec.
Since 8 is not a valid octal digit, parseInt stops there, returning the value 0.
By explicitly using a radix, you tell parseInt not to try to figure out what numeral system is being used but instead to use the one you specify. Your instinct when typing parseInt should always be to specify the radix; not doing so leaves you open to oddities.
"08" mean 8 based number. You should specify second argument.
parseInt("08", 10)
#T.J. gave a great explanation for the behaviour you see. Another way to parse a number string is to use unary +:
var num = +"08";
From http://www.bennadel.com/blog/2012-Exploring-Javascript-s-parseInt-And-parseFloat-Functions.htm:
Strings that start with "0" are assumed to be base8 (octal).
From MDC - parseInt:
If the input string begins with "0", radix is eight (octal). This feature is non-standard, and some implementations deliberately do not support it (instead using the radix 10). For this reason always specify a radix when using parseInt.
And the example:
parseInt("08"); // 0, '8' is not an octal digit.
That is, since no radix was passed in and the string begins with 0 octal is assumed. Since 8 is not an octal digit it cannot be parsed.
Solution? Always provide a radix parameter:
parseInt("08", 10);
If you run it through jslint, it'll squawk at you for not including the radix parameter. Yes, the radix is optional, but probably should be included every time. A number starting with 0 is assumed to be octal unless otherwise specified.
var foo = parseInt("08", 10);
Number prefixed with "0" is octal number. 8 is invalid octal number. so the result is 0

Categories

Resources